Given
m1(mass of red bumper): 225 Kg
m2 (mass of blue bumper): 180 Kg
m3(mass of green bumper):150 Kg
v1 (velocity of red bumper): 3.0 m/s
v2 (final velocity of the combined bumpers): ?
The law of conservation of momentum states that when two bodies collide with each other, the momentum of the two bodies before the collision is equal to the momentum after the collision. This can be mathemetaically represented as below:
Pa= Pb
Where Pa is the momentum before collision and Pb is the momentum after collision.
Now applying this law for the above problem we get
Momentum before collision= momentum after collision.
Momentum before collision = (m1+m2) x v1 =(225+180)x 3 = 1215 Kgm/s
Momentum after collision = (m1+m2+m3) x v2 =(225+180+150)x v2
=555v2
Now we know that Momentum before collision= momentum after collision.
Hence we get
1215 = 555 v2
v2 = 2.188 m/s
Hence the velocity of the combined bumper cars is 2.188 m/s
Answer:
99.95%
Explanation:
A double pulsar system named PSR J0737-3039A/B in Puppis constellation was discovered in the year 2003. Pulsars are second most densest object in the universe after black holes and they emit radio waves at regular intervals. This pair presented a great and natural setup to test the Theory of General Relativity presented by Einstein in 1915. In this theory Einstein had presented a set of equations on how the space-time fabric will be curved because of the very dense objects such as Neutron stars. It also predicted how the gravitational waves are created because of stars orbiting each other.
A team of astrophysicists led by Michael Kramer, conducted a study on how these gravitational waves will impact the time in which the radio waves emitted by pulsars will reach Earth. The result of the study proved the theory of General Relativity to be accurate up to 99.95%.
Explanation:
The work done equals the change in energy.
W = ΔKE
W = 0 − ½mv²
W = -½ (0.270 kg) (-7.50 m/s)²
W = -7.59 J
Work is force times displacement.
W = Fd
-7.59 J = F (-0.150 m)
F = 50.6 N
In Millikan oil drop experiment, when the switch is opened and by altering supply the charge of electron is determined.
Explanation:
Millikan's oil drop experiment is held to determine the terminal velocity and charge of the oil drop.
Firstly without any supply of voltage when an oil drop is sprinkled and these droplets gather electrons together and gives negative charge as they pass through air.
By applying and altering voltage applied on the plates, drop can be suspended in air. Millikan observed one drop after another, varying the voltage and noting the effect. After many repetitions he concluded that charge could assume only certain fixed values.
After conducting many times he concluded 1.602176487 ×10−19 C as the charge of an electron.
The answer is -15.625m/s².
Acceleration is the change in velocity over a period of time. It can be computed using the formula:

Where:
vf = final velocity
vi = initial velocity
t = time
Now let's see what was given in your problem:
The car was moving at 25m/s and then came to a stop. So initially it was moving and then it stopped. This means the final velocity will be 0m/s because it stopped moving.
But look at the problem, it shows no time. We need to solve for time from the time it moved till it reached the red light 20 m away.
Time can be computed using the kinematics formula:

We just derive the formula from the equation by filling out what we know first.




The time it took from the point it was moving till it stopped is 1.6s. We can now use this in our acceleration formula.



Notice that the acceleration is negative. This means that the car decelerated or slowed down.