Answer: It would increase.
Explanation:
The equation for determining the force of the gravitational pull between any two objects is:

Where G is the universal gravitational constant, m1 is the mass of one body, m2 is the mass of the other body, and r^2 is the distance between the two objects' centers squared.
Assuming the Earth's mass but not its diameter increased, in the equation above m1 (the term usually indicative of the object of larger mass) would increase, while the r^2 would not.
Thus, it goes without saying that, with some simple reasoning about fractions, an increasing numerator over a constant denominator would result in a larger number to multiply by G, thus also meaning a larger gravitational strength between Earth and whatever other object is of interest.
Answer:
In the case of a solution transition metal complex that has an absorption peak at 450 nm in the blue region of the visible spectrum, the (complementary) color of this solution is orange (option B).
Explanation:
The portion of UV-visible radiation that is absorbed implies that a portion of electromagnetic radiation is not absorbed by the sample and is therefore transmitted through it and can be captured by the human eye. That is, in the visible region of a complex, the visible color of a solution can be seen and that corresponds to the wavelengths of light it transmits, not absorbs. The absorbing color is complementary to the color it transmits.
So, in the attached image you can see the approximate wavelengths with the colors, where they locate the wavelength with the absorbed color, you will be able to observe the complementary color that is seen or reflected.
<u><em>
In the case of a solution transition metal complex that has an absorption peak at 450 nm in the blue region of the visible spectrum, the (complementary) color of this solution is orange (option B).</em></u>
Answer:
The answer is 3.
Explanation:
The answer to this question can be found by applying the right hand rule for which the pointer finger is in the direction of the electron movement, the thumb is pointing in the direction of the magnetic field, so the effect that this will have on the electrons is the direction that the middle finger points in which is right in this example.
So as a result of the magnetic field directed vertically downwards which is at a right angle with the electron beams, the electrons will move to the right and the spot will be deflected to the right of the screen when looking from the electron source.
I hope this answer helps.
Answer:
The fraction of mass that was thrown out is calculated by the following Formula:
M - m = (3a/2)/(g²- (a²/2) - (ag/2))
Explanation:
We know that Force on a moving object is equal to the product of its mass and acceleration given as:
F = ma
And there is gravitational force always acting on an object in the downward direction which is equal to g = 9.8 ms⁻²
Here as a convention we will use positive sign with acceleration to represent downward acceleration and negative sign with acceleration represent upward acceleration.
Case 1:
Hot balloon of mass = M
acceleration = a
Upward force due to hot air = F = constant
Gravitational force downwards = Mg
Net force on balloon is given as:
Ma = Gravitational force - Upward Force
Ma = Mg - F (balloon is moving downwards so Mg > F)
F = Mg - Ma
F = M (g-a)
M = F/(g-a)
Case 2:
After the ballast has thrown out,the new mass is m. The new acceleration is -a/2 in the upward direction:
Net Force is given as:
-m(a/2) = mg - F (Balloon is moving upwards so F > mg)
F = mg + m(a/2)
F = m(g + (a/2))
m = F/(g + (a/2))
Calculating the fraction of the initial mass dropped:
![M-m = \frac{F}{g-a} - \frac{F}{g+\frac{a}{2} }\\M-m = F*[\frac{1}{g-a} - \frac{1}{g+\frac{a}{2} }]\\M-m = F*[\frac{(g+(a/2)) - (g-a)}{(g-a)(g+(a/2))} ]\\M-m = F*[\frac{g+(a/2) - g + a)}{(g-a)(g+(a/2))} ]\\M-m = F*[\frac{(3a/2)}{g^{2}-\frac{a^{2}}{2}-\frac{ag}{2}} ]](https://tex.z-dn.net/?f=M-m%20%3D%20%5Cfrac%7BF%7D%7Bg-a%7D%20-%20%5Cfrac%7BF%7D%7Bg%2B%5Cfrac%7Ba%7D%7B2%7D%20%7D%5C%5CM-m%20%3D%20F%2A%5B%5Cfrac%7B1%7D%7Bg-a%7D%20-%20%5Cfrac%7B1%7D%7Bg%2B%5Cfrac%7Ba%7D%7B2%7D%20%7D%5D%5C%5CM-m%20%3D%20F%2A%5B%5Cfrac%7B%28g%2B%28a%2F2%29%29%20-%20%28g-a%29%7D%7B%28g-a%29%28g%2B%28a%2F2%29%29%7D%20%5D%5C%5CM-m%20%3D%20F%2A%5B%5Cfrac%7Bg%2B%28a%2F2%29%20-%20g%20%2B%20a%29%7D%7B%28g-a%29%28g%2B%28a%2F2%29%29%7D%20%5D%5C%5CM-m%20%3D%20F%2A%5B%5Cfrac%7B%283a%2F2%29%7D%7Bg%5E%7B2%7D-%5Cfrac%7Ba%5E%7B2%7D%7D%7B2%7D-%5Cfrac%7Bag%7D%7B2%7D%7D%20%5D)
Answer:
the expected distance is 4.32 m
Explanation:
given data
half life time = 1.8 ×
s
speed = 0.8 c = 0.8 × 3 ×
to find out
expected distance over
solution
we know c is speed of light in air is 3 ×
m/s
we calculate expected distance by given formula that is
expected distance = half life time × speed .........1
put here all these value
expected distance = half life time × speed
expected distance = 1.8 ×
× 0.8 × 3 ×
expected distance = 4.32
so the expected distance is 4.32 m