See electronegativity is the tendency of an atom to gain an electron and flourine with a valecy of one and a vey small size is the most electronegetive because its orbitals are quite closed to the nucleus and hence the attraction is quite strong so it can attract an electron.the question that arises is that some smaller atoms should be more electronegetive as they are closer to the nucleus but it need more energy for them as compared to flourine to complete their octet. now polarity increases when two atoms of quite different sizes form a compound ... the more electronegetive atom will always attract the bond pair forming a negetive charge on it and positive on the less electroneg. one and polarity increases with electronegetivity of the anion.now as your question says
<span>5=I2.. because both the atoms are same there wont be permanent polarity </span>
<span>4=HI iodine is the least electronegetive of all the halogens due to its large size,electronegetivity decreases down the group </span>
<span>3=HBr bromine is the 2nd largest halogen </span>
<span>2=HCl chlorine is the 3rd largest halogen </span>
<span>1=HF fluorine is the smallest halogen making and hence makes the most polar</span>
Complete Question
The complete question is shown on the first uploaded image
Answer:
The correct option is 
Explanation:
From the question we are told that
the cell voltage for AD is 
From the data give we can see that

i.e 
In the same way we can say that

=> 

Dilution<span> is when you decrease the concentration of a </span>solution<span> by adding a solvent. As a result, if you want to </span>dilute<span> salt water, just add water. ... Add more solute until it quits dissolving. That point at which a solute quits dissolving is the point at which it's </span>saturated<span>.</span>
Answer:
C3H6O2
Explanation:
To find the empirical formula of the compound, we divide the amount in moles of each of the elements by the amount in mole of the element with the smallest number of mole. In this question, the element with the smallest number of moles is oxygen with 1.36 mole. Hence, we divide the number of moles of each element by this.
H = 4.10/1.36 = 3
O = 1.36/1.36 = 1
C = 2.05/1.36 = 1.5
We then multiply through by 2 to yield the compound with the empirical formula C3H6O2
<span>At standard temperature and pressure 22.4 l of an ideal gas would contain 1 mole. in order to find the change in moles we must look at the ideal gas law PV=nRT where P=Pressure V=volume n=Moles R= Gas constant T= Temperature. To simplify this equation we will be using the gas constant at .08206 L-atm/mol-K. We must first convert 100c to k which is 373.15. Then we can plug the values into our equation which gives us (2atm)(14.5 l)=(n)(.08206 L-atm/mol-K)(373.15). After some basic algebra we get the moles to equal roughly .95 which is .05 moles less than our original system.</span>