Ceres: Yes!
Namaka: No!
Eris: Yes!
Charon: No. (it's a satellite, and dwarf planet's can't be satellites!)
Haumea: Yes!
Makemake: Yes!
Pluto: Yes!
Glad To Help;)
Answer:
t = 25 seconds
Explanation:
Given that,
Distance, d = 115 m
Initial speed, u = 4.2 m/s
Final speed, v = 5 m/s
We need to find the time taken in increasing the speed.
We know that,
Acceleration,
....(1)
The third equation of kinematics is as follows :

Hence, it will take 25 seconds to increase the speed.
1.
Answer:
a) It is less
Explanation:
By energy conservation we can say that initial potential energy of both child must be equal to the final kinetic energy of the two child.
Since initially they are at same height so we will say that initial potential energy will be given as
and MgH
so the child with greater mass has more energy and hence smaller child will reach with smaller kinetic energy
2.
Answer:
b. The two speeds are equal.
Explanation:
As we know by mechanical energy conservation law we have


since both child starts at same height so here they both will reach the bottom at same speed
3.
Answer:
c. The two accelerations are equal
Explanation:
Since we know that average acceleration of the motion is given as

since here initial and final speeds are same so they both must have same average acceleration here.
Answer:
d. 37 °C
Explanation:
= mass of lump of metal = 250 g
= specific heat of lump of metal = 0.25 cal/g°C
= Initial temperature of lump of metal = 70 °C
= mass of water = 75 g
= specific heat of water = 1 cal/g°C
= Initial temperature of water = 20 °C
= mass of calorimeter = 500 g
= specific heat of calorimeter = 0.10 cal/g°C
= Initial temperature of calorimeter = 20 °C
= Final equilibrium temperature
Using conservation of heat
Heat lost by lump of metal = heat gained by water + heat gained by calorimeter

Answer:
2666 kg
0.11567 m/s²
Explanation:
m = Mass of boat
a = Acceleration of boat
From Newton's second law
Force

Force on the first boat is 333.25 N

Hence, mass of the second boat is 2666 kg
Combined mass = 2666+215 = 2881 kg

The acceleration on the combined mass is 0.11567 m/s²