Answer:
Explanation:
We have in this question the equilibrium
X ( g ) + Y ( g ) ⇆ Z ( g )
With the equilibrium contant Kp = pZ/(pX x pY)
The moment we change the concentration of Y, we are changing effectively the partial pressure of Y since pressure and concentration are directly proportional
pV = nRT ⇒ p = nRT/V and n/V is molarity.
Therefore we can calculate the reaction quotient Q
Qp = pZ/(pX x pY) = 1/ 1 x 0.5 atm = 2
Since Qp is greater than Kp the system proceeds from right to left.
We could also arrive to the same conclusion by applying LeChatelier´s principle which states that any disturbance in the equilibrium, the system will react in such a way to counteract the change to restore the equilibrium. Therefore, by having reduced the pressure of Y the system will react favoring the reactants side increasing some of the y pressure until restoring the equilibrium Kp = 1.
Answer:
3.7 mol Al2O3 x 4 mol Al = 7.4 mol Al 2 mol Al2O3
Explanation:
Answer:
194 g/mol.
Explanation:
Hello,
In this case, one first must compute the mass of each element as shown below:

Next, the corresponding moles:

Then, each element's subscripts is found to be:

Therefore, the empirical formula is:

Nonetheless, it has a molar mass of 97bg/mol, thereby, by multiplying such formula by 2 one gets:

Which has a molar mass of 194 g/mol being correctly contained in the given interval.
Best regards.
1. Answer: C. The objects' temperatures have both changed by the same amount.
Explanation:
An object is said to be in thermal equilibrium when the objects have attained same temperature. Heat transfer from hotter object to colder one in contact takes place until the temperature of the two are equal. It is not necessary that the temperature of both the objects changes by same amount. After attainment of thermal equilibrium, the temperature of the objects stop changing and the tiny particles of the object move at the same rate.
Hence, the objects' temperatures have both changed by the same amount. is not necessarily true for two objects in thermal equilibrium.
2. Answer: C. Objects are made of tiny particles, and their motion depends on the temperature.
Explanation:
Kinetic theory of heat states that the kinetic energy of constituent particles determine the temperature of the object. The statement that best explains this is Objects are made of tiny particles, and their motion depends on the temperature.
You multiply avogadro's number to what you were given.
8.30x10^23 * 6. 0221409x10^23
=1.357*10^25
That should be the right answer but I'm not sure. It has been awhile since I have done this.