Answer:
303 Ω
Explanation:
Given
Represent the resistors with R1, R2 and RT
R1 = 633
RT = 205
Required
Determine R2
Since it's a parallel connection, it can be solved using.
1/Rt = 1/R1 + 1/R2
Substitute values for R1 and RT
1/205 = 1/633 + 1/R2
Collect Like Terms
1/R2 = 1/205 - 1/633
Take LCM
1/R2 = (633 - 205)/(205 * 633)
1/R2 = 428/129765
Take reciprocal of both sides
R2 = 129765/428
R2 = 303 --- approximated
Donna's doctor must have diagnosed her with muscle cramps. With the given symptoms above, it is likely that she is experiencing muscle cramps. Muscle cramps most likely happen when the individual experiencing it is lack of fluid intake, causing the muscles to tighten causing pain and for the muscle to contract involuntarily.
Explanation:
Below is an attachment containing the solution
W = 1/2k*x^2.
k = spring constant = 2500 n/m.
x = distance = 4 cm = 0.04m (convert to same units).
W = 1/2(2500)(0.04)^2 = 2J.
To solve this problem we will use the kinematic equations of angular motion in relation to those of linear / tangential motion.
We will proceed to find the centripetal acceleration (From the ratio of the radius and angular velocity to the linear velocity) and the tangential acceleration to finally find the total acceleration of the body.
Our data is given as:
The angular speed
The angular acceleration
The distance
The relation between the linear velocity and angular velocity is

Where,
r = Radius
Angular velocity
At the same time we have that the centripetal acceleration is






Now the tangential acceleration is given as,

Here,
Angular acceleration
r = Radius


Finally using the properties of the vectors, we will have that the resulting component of the acceleration would be



Therefore the correct answer is C.