Answer:
6.18 m/s
Explanation:
Roller skate collision
The final direction of the system (me=M + person=P) velocity vector is at an angle; Ф, to the direction running south to north. Apply the component form of the impulse-momentum equation, firstly;
x-axis component form (+x east);
+
+
=
+
Ф
60 ·8 + 0 = (60 + 80)
Ф
480 = 140
Ф................. (I)
y-axis component form (+y north);
+
+
=
+ 
Ф
0 + 80.9 = (60 + 80)
Ф
720=
140
Ф
140Vf=
Ф......................................(2)
Substituting (2) into (1) to give the angle;
480 = 720tan Ф
Ф = arctan(0.67) =33.69°.......................(3)
Evaluating (1) with (3) gives the velocity magnitude
480 = 140Vfsin 33.69°
Vf=6.18 m/s
note 1:
This angle corresponds to a direction; 90° - 33.69° = 56.31° north of east.
Answer:
15,505 N
Explanation:
Using the principle of conservation of energy, the potential energy loss of the student equals the kinetic energy gain of the student
-ΔU = ΔK
-(U₂ - U₁) = K₂ - K₁ where U₁ = initial potential energy = mgh , U₂ = final potential energy = 0, K₁ = initial kinetic energy = 0 and K₂ = final kinetic energy = 1/2mv²
-(0 - mgh) = 1/2mv² - 0
mgh = 1/2mv² where m = mass of student = 70kg, h = height of platform = 1 m, g = acceleration due to gravity = 9.8 m/s² and v = final velocity of student as he hits the ground.
mgh = 1/2mv²
gh = 1/2v²
v² = 2gh
v = √(2gh)
v = √(2 × 9.8 m/s² × 1 m)
v = √(19.6 m²/s²)
v = 4.43 m/s
Upon impact on the ground and stopping, impulse I = Ft = m(v' - v) where F = force, t = time = 0.02 s, m =mass of student = 70 kg, v = initial velocity on impact = 4.43 m/s and v'= final velocity at stopping = 0 m/s
So Ft = m(v' - v)
F = m(v' - v)/t
substituting the values of the variables, we have
F = 70 kg(0 m/s - 4.43 m/s)/0.02 s
= 70 kg(- 4.43 m/s)/0.02 s
= -310.1 kgm/s ÷ 0.02 s
= -15,505 N
So, the force transmitted to her bones is 15,505 N
Emily throws the ball at 30 degree below the horizontal
so here the speed is 14 m/s and hence we will find its horizontal and vertical components


vertical distance between them

now we will use kinematics in order to find the time taken by the ball to reach at Allison

here acceleration is due to gravity

now we will have

now solving above quadratic equation we have

now in order to find the horizontal distance where ball will fall is given as

here it shows that horizontal motion is uniform motion and it is not accelerated so we can use distance = speed * time

so the distance at which Allison is standing to catch the ball will be 5.33 m
F=ma
m=total mass = 2300kg+2500kg=4800
F=18000N
a=?
a=F/m
a=18000/4800
a=3.8m/s^2
Final answer