answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
natita [175]
2 years ago
3

A car traveling at 105 km/h strikes a tree. The front end of the car compresses and the driver comes to rest after traveling 0.8

0 m. (a) What was the magnitude of the average acceleration of the driver during the collision? (b) Express the answer in terms of “g’s,” where 1.00 g = 9.80 m/s^2.
Physics
1 answer:
muminat2 years ago
4 0

Answer:

Part a)

a = 531.7 m/s/s

Part b)

a = 54.25 g

Explanation:

Part a)

Initial speed of the car is given as

v = 105 km/h

now we have

v = 29.2 m/s

now we know that it stops in 0.80 m

now by kinematics we have

a = \frac{v_f^2 - v_i^2}{2d}

so we will have

a = \frac{0 - 29.2^2}{2(0.80)}

a = 531.7 m/s^2

Part b)

in terms of g this is equal to

a = \frac{531.7}{9.80}

a = 54.25 g

You might be interested in
A stationary 1.67-kg object is struck by a stick. The object experiences a horizontal force given by F = at - bt2, where t is th
Usimov [2.4K]

Answer:

v_{f}  = 3289.8 m / s

Explanation:

This exercise can be solved using the definition of momentum

     I = ∫ F dt

Let's replace and calculate

     I = ∫ (at - bt²) dt

We integrate

      I = a t² / 2 - b t³ / 3

We evaluate between the lower limits I=0  for t = 0 s and higher I=I for t = 2.74 ms

      I = a (2,74² / 2- 0) - b (2,74³ / 3 -0)

      I = a 3,754 - b 6,857

We substitute the values ​​of a and b

      I = 1500 3,754 - 20 6,857

      I = 5,631 - 137.14

      I = 5493.9 N s

Now let's use the relationship between momentum and momentum

      I = Δp = m v_{f} - m v₀o

      I = m v_{f}  - 0

     v_{f}  = I / m

    v_{f}  = 5493.9 /1.67

    v_{f}  = 3289.8 m / s

5 0
2 years ago
A carousel - a horizontal rotating platform - of radius r is initially at rest, and then begins to accelerate constantly until i
OLga [1]

Answer:

α = (ω²)/8π

Explanation:

The angular acceleration(α) of the carousel can be determined by using rotational kinematics:

ω² =ωo² + 2αθ

Let's make α the subject of this equation ;

ω² - ωo² = 2αθ

α = (ω² −ωo²)/2θ

Now, from the question, since initially at rest, thus, ωo = 0

Also,since 2 revolutions, thus, θ = 2 x 2π = 4π since one revolution is 2π

Plugging in the relevant values to get ;

α = (ω²)/2(4π)

α = (ω²)/8π

7 0
2 years ago
Sara and Saba are identical twins who are the same in every way, including their weights. One day, Sara and Saba decided to go f
Sphinxa [80]

As Saba was wearing high heels they are long from the bottom so they sank however Sana was wearing snow boots which means they were flat and so she didn’t sink.

3 0
2 years ago
Two long conducting cylindrical shells are coaxial and have radii of 20 mm and 80 mm. The electric potential of the inner conduc
xxMikexx [17]

Answer: 14.52*10^6 m/s

Explanation: In order to explain this problem we have to consider the energy conservation for the electron within the coaxial cylidrical wire.

the change in potential energy for the electron; e*ΔV is  equal to energy kinetic gained for the electron so:

e*ΔV=1/2*m*v^2  v^=(2*e*ΔV/m)^1/2= (2*1.6*10^-19*600/9.1*10^-31)^1/2=14.52 *10^6 m/s

3 0
2 years ago
A star orbiting a black hole in a clockwise direction at a radial distance of 1.0 × 106 km is acted upon by a counterclockwise f
snow_tiger [21]

Answer:

2.5 \times 10^{11} N-m upwards        

Explanation:

Torque is the vector cross product of the force and radial distance.

\tau = rF sin \theta

\tau = (1.0\times 10^6 \times 10^3) m \times 250 N\times sin 90^o \\\Rightarrow \tau= 2.5 \times 10^{11} N-m

The direction of the torque would be perpendicular to the direction of the force and radial distance. The direction of the force is counter-clockwise. The direction of the torque would be upwards.

4 0
2 years ago
Other questions:
  • A photon has an energy of 5.53 × 10–17 j. what is its frequency in s–1 (h = 6.63 × 10–34 j • s)?
    6·2 answers
  • If the net force acting on an object increases by 50 percent, then the acceleration of the object will
    11·1 answer
  • A horizontal jet of water is made to hit a vertical wall with a negligible rebound. If the speed of water from the jet is 'v', t
    13·1 answer
  • A hydrogen atom contains a single electron that moves in a circular orbit about a single proton. Assume the proton is stationary
    8·1 answer
  • Hydraulic press is called an instrument for multiplication of force. Why?
    10·1 answer
  • As the driver steps on the gas pedal, a car of mass 1 140 kg accelerates from rest. During the first few seconds of motion, the
    14·1 answer
  • The eyes of many older people have lost the ability to accommodate, and so an older person’s near point may be more than 25 cm f
    12·1 answer
  • Quickly spinning the handle of a hand generator, Kristina is able to light three bulbs in a circuit. When she spins the generato
    11·1 answer
  • Suppose that we are designing a cardiac pacemaker circuit. The circuit is required to deliver pulses of 1ms duration to the hear
    13·1 answer
  • What is the minimum amount of energy required to completely melt a 7.25-kg lead brick which has a starting temperature of 18.0 °
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!