Answer:
Option "B" is correct.
Explanation:
According to VSEPR theory, There are repulsion forces exists among the bond pair - bond pair or bond pair - lone pair of electrons. In
and
, the number of electron pairs are same but methane has all the four bond pairs where in ammonia, three bond pairs and one lone pair exists. And thus there are repulsion forces possible in between the lone pair and bond pair of electrons thus the arrangement of electron pairs around both the molecules is same or different depending up on the conditions leading to maximum repulsion.
<u>Answer</u>: Conduction, convection, and radiation move energy from the Sun to Earth and throughout Earth.
Without more information about the experiment itself, I would choose the above answer as correct. All the other statements are correct, however none of them relates to the earth distribution processes on Earth. The last statement does.
Answer:
This would support Dalton's postulates that proposed the atoms are indivisible because no small particles are involved.
Explanation:
Experiment using the gas discharge tube by J.J Thomson led to the discovery of cathode rays which are now known as electrons.
Primarily, Thomson's experiment led to the discovery of cathode rays, electrons, as subatomic particles.
If the size of the atoms observed at the cathode is the same as that of the rays,we can conclude that the particles of the rays are the simplest form of matter we can have. This would suggest that the atom is indeed the smallest indivisible particle of a matter according to Dalton.
<u>Answer:</u> The element represented by M is Strontium.
<u>Explanation:</u>
Let us consider the molar mass of metal be 'x'.
The molar mass of MO will be = Molar mass of oxygen + Molar mass of metal = (16 + x)g/mol
It is given in the question that 15.44% of oxygen is present in metal oxide. So, the equation becomes:

The metal atom having molar mass as 87.62/mol is Strontium.
Hence, the element represented by M is Strontium.
The properties of the atomic orbital are actually
dependent on the quantum numbers.
size of atomic orbital: governed by the principal quantum
number (n)
shape of atomic orbital: governed by the angular momentum
quantum number (l)
orientation in space: governed by the magnetic quantum
number (ml)
Since we are asked about the shape, hence the correct answer
is:
angular momentum quantum number (l)