answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Hunter-Best [27]
2 years ago
5

A fireman clings to a vertical ladder and directs the nozzle of a hose horizontally toward a burning building. The rate of water

flow is 6.31kg/s, and the nozzle speed is 12.5 m/s. The hose passes vertically between the fireman’s feet, which are 1.30 m below the nozzle. Choose the origin to be inside the hose between the fireman’s feet. What torque must the fireman exert on the hose? (This could also be stated, what is the rate of change of the angular momentum of the water?)
Physics
1 answer:
Aleks [24]2 years ago
4 0

Answer:

A torque of 102.5375 Nm must be exerted by the fireman

Explanation:

Given:

The rate of water flow = 6.31 kg/s

The speed of nozzle  = 12.5 m/s

Now, from the Newton's second law we have  

The reaction force to water being redirected horizontally (F) = rate of change of water's momentum in the horizontal direction

thus we have,

F = 6.31 kg/s x 12.5m/s

or

F = 78.875 N  

Now,

The torque (T) exerted by water force about the fireman's will be

T = (F x d)

or

T = 78.875 N x 1.30 m

T = 102.5375 Nm

hence,

<u>A torque of 102.5375 Nm must be exerted by the fireman</u>

You might be interested in
A nonuniform, horizontal bar of mass m is supported by two massless wires against gravity. The left wire makes an angle ϕ1 with
strojnjashka [21]

Answer:

x=\frac{L}{tan(\phi_1)cot(\phi_2)+1}

Explanation:

Let 'F₁'  and 'F₂' be the forces applied by left and right wires on the bar as shown in the diagram below.

Now, the horizontal and vertical components of these forces are:

F_{1x} = -F_1cos(\phi_1)\\F_{1y}=F_1sin(\phi_1)\\\\F_{2x}=F_2cos(\phi_2)\\F_{2y}=F_2sin(\phi_2)

As the system is in equilibrium, the net force in x and y directions is 0 and net torque about any point is also 0. Therefore,

\sum F_x=0\\F_{1x}=F_{2x}\\F_1cos(\phi_1)=F_2cos(\phi_2)\\\frac{F_1}{F_2}=\frac{cos(\phi_2)}{cos(\phi_1)}-------1

Now, let us find the net torque about a point 'P' that is just above the center of mass at the upper edge of the bar.

At point 'P', there are no torques exerted by the F₁x and F₂x nor the weight of the bar as they all lie along the axis of rotation.

Therefore, the net torque by the forces F_{1y}\ and\ F_{2y} will be zero. This gives,

-F_{1y}\times x + F_{2y}(L-x) = 0\\F_{1y}\times x=F_{2y}(L-x)\\x=\frac{F_{2y}(L-x)}{F_{1y}}

But, F_{1y}=F_1sin(\phi_1)\ and\ F_{2y}=F_2sin(\phi_2)

Therefore,

x=\frac{F_2sin(\phi_2)(L-x)}{F_1sin(\phi_1)}\\\textrm{From equation (1),}\frac{F_2}{F_1}=\frac{cos(\phi_1)}{cos(\phi_2)}\\\therefore x=\frac{cos(\phi_1)}{cos(\phi_2)}\times \frac{sin(\phi_2}{sin(\phi_1)}\times (L-x)\\x=\frac{cos(\phi_1)}{cos(\phi_2)}\times \frac{sin(\phi_2}{sin(\phi_1)}\times L-\frac{cos(\phi_1)}{cos(\phi_2)}\times \frac{sin(\phi_2}{sin(\phi_1)}\times x\\\\

x(1+\frac{cos(\phi_1)}{cos(\phi_2)}\times \frac{sin(\phi_2}{sin(\phi_1)})=\frac{cos(\phi_1)}{cos(\phi_2)}\times \frac{sin(\phi_2}{sin(\phi_1)}L\\x(1+\frac{cos(\phi_1)}{sin(\phi_1)}\times \frac{sin(\phi_2}{cos(\phi_2)})=\frac{cos(\phi_1)}{cos(\phi_2)}\times \frac{sin(\phi_2}{sin(\phi_1)}L

We know,

tan(\phi)=\frac{sin(\phi)}{cos(\phi)}\\\\cot(\phi)=\frac{cos(\phi)}{sin(\phi)}

∴x=\frac{L}{tan(\phi_1)cot(\phi_2)+1}

6 0
2 years ago
Which activity is a method of habitat restoration?
irina1246 [14]

A. cleaning up after environmental disasters

7 0
2 years ago
Read 2 more answers
Magnus has reached the finals of a strength competition. In the first round, he has to pull a city bus as far as he can. One end
iragen [17]

Answer:

The workdone is  W_d =-4400J

Explanation:

The free body diagram is shown on the first uploaded image

From the question we are given that

            The force is on the force gauge  F = 2750 N

             The distance that Magnus pulled the bus  d = 1.60m

Generally  the workdone by the tension force on Magnus is

                  Workdone = Force * displacement \ in \ the \ direction \ of \ force

                     W_d = F * (-d)

This negative sign show that is tension force  is in the opposite direction to Magnus movement (i.e the movement of the bus )

Substituting value we have

                   Workdone  =  - 2750 * 1.60

                                     =-4400 J

7 0
2 years ago
A tennis player's racket applies an average force of 200. newtons to a tennis ball for 0.025 second. The average force exerted o
Sever21 [200]

Answer:

200N

Explanation:

6 0
2 years ago
An electromagnetic wave is traveling through vacuum in the positive x direction. Its electric field vector is given by E⃗ =E0sin
fgiga [73]

Given that,

The electric field is given by,

\vec{E}=E_{0}\sin(kx-\omega t)\hat{j}

Suppose, B is the amplitude of magnetic field vector.

We need to find the complete expression for the magnetic field vector of the wave

Using formula of magnetic field

Direction of (\vec{E}\times\vec{B}) vector is the direction of propagation of the wave .

Direction of magnetic field = \hat{j}

B=B_{0}\sin(kx-\omega t)\hat{k}

We need to calculate the poynting vector

Using formula of poynting

\vec{S}=\dfrac{E\times B}{\mu_{0}}

Put the value into the formula

\vec{S}=\dfrac{E_{0}\sin(kx-\omega t)\hat{j}\timesB_{0}\sin(kx-\omega t)\hat{k}}{\mu_{0}}

\vec{S}=\dfrac{E_{0}B_{0}}{\mu_{0}}(\sin^2(kx-\omega t))\hat{i}

Hence, The poynting vector is \dfrac{E_{0}B_{0}}{\mu_{0}}(\sin^2(kx-\omega t))\hat{i}

7 0
2 years ago
Other questions:
  • A wooden disk of mass m and radius r has a string of negligible mass is wrapped around it. If the disk is allowed to fall and th
    9·1 answer
  • What is the Physics Primer?
    15·2 answers
  • A football player kicks a football downfield. The height of the football increases until it reaches a maximum height of 15 yards
    12·2 answers
  • A superhero swings a magic hammer over her head in a horizontal plane. The end of the hammer moves around a circular path of rad
    11·1 answer
  • An airplane cruises at 850 km/h relative to the air. It is flying from Denver, Colorado, due west to Reno, Nevada, a distance of
    11·1 answer
  • Newton's law of cooling states that the temperature of an object changes at a rate proportional to the difference between its te
    11·1 answer
  • John is going to use a rope to pull his sister Laura across the ground in a sled through the snow. He is pulling horizontally wi
    13·1 answer
  • A lion and a pig participate in a race over a 2.20 km long course. The lion travels at a speed of 18.0 m/s and the pig can do 2.
    15·1 answer
  • Which of the following has a particles in most irregular pattern​
    10·1 answer
  • Is velocity ratio of a machine affected by applying oil on it?Explain with reason.​
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!