Answer:
(a): The frequency of the waves is f= 0.16 Hz
Explanation:
T/4= 1.5 s
T= 6 sec
f= 1/T
f= 0.16 Hz (a)
Answer:
Explanation:
Carton cycle consists of four thermodynamic processes . The first is isothermal expansion at higher temperature , then adiabatic expansion which lowers the temperature of gas . The third process is isothermal compression at lower temperature and the last process is adiabatic compression which increases the temperature of the gas to its original temperature .
So the given process of isothermal compression must have been done at the temperature of 300K , keeping the temperature constant .
Work done on gas at isothermal compression is equal to heat transfer .
work done on gas = 80 x 10³ J
work done on gas = n RT ln v₁ / v₂
n is number of moles v₁ and v₂ are initial and final volume
molecular weight of gas = 28.97 g
1.5 kg = 1500 / 28.97 moles
= 51.77 moles
work done on gas = n RT ln v₁ / v₂
Putting the values in the equation above
80 x 10³ = 51.78 x 8.31 x 300 x ln v₁ / .2
ln v₁ / .2 = .62
v₁ / .2 = 1.8589
v₁ = 0.37 m³
Answer:
C. The structure has numerous features indicating alignments with movements of the Sun and cultural heritage claimed that the rulers were descendants of the Sun.
Explanation:
Answer:

Explanation:
Let 'F₁' and 'F₂' be the forces applied by left and right wires on the bar as shown in the diagram below.
Now, the horizontal and vertical components of these forces are:

As the system is in equilibrium, the net force in x and y directions is 0 and net torque about any point is also 0. Therefore,

Now, let us find the net torque about a point 'P' that is just above the center of mass at the upper edge of the bar.
At point 'P', there are no torques exerted by the F₁x and F₂x nor the weight of the bar as they all lie along the axis of rotation.
Therefore, the net torque by the forces
will be zero. This gives,

But, 
Therefore,


We know,

∴
Answer:
The transverse displacement is
Explanation:
From the question we are told that
The generally equation for the mechanical wave is

The speed of the transverse wave is 
The amplitude of the transverse wave is 
The wavelength of the transverse wave is 
At t= 0.150s , x = 1.51 m
The angular frequency of the wave is mathematically represented as

Substituting values


The propagation constant k is mathematically represented as

Substituting values


Substituting values into the equation for mechanical waves
