Answer:
We are given x= bt +ct²
So
A. bxt= m
Because m/s*s= m
So b= m/s and c= m/s²
B.
x= bt-ct²
So at x=0 t=0
x=0 t= 2
We have
bt = ct² so t = b/c at x= 0
So b-2ct= 0
B. To find velocity we use
dx / dt = b - 2 Ct
C. At rest wen V= 0
We have t= b/2c
D. To find acceleration we use
dv / dt = - 2C
You hold a piece of wood in one hand and a piece of iron in the other. Both pieces have the same volume, and you hold them fully under water at the same depth. At the moment you let go of them, which one experiences the greater buoyancy force?<span>
</span>
Answer:
The temperature of the gas is 1197.02 K
Explanation:
From ideal gas law;
PV = nRT
Where;
P is the pressure of the gas
V is the volume of the gas
R is ideal gas constant = 8.314 L.kPa/mol.K
T is the temperature of the gas
n is the number of moles of gas
Volume of the gas in the cylindrical container = πr²h
Given;
r = 6/2 = 3 cm = 0.03 m
h = 11 cm = 0.11 m
V = π × (0.03)² × 0.11 = 3.11 × 10⁻⁴ m³ = 0.311 L
number of moles of oxygen gas = Reacting mass / molar mass


Therefore, the temperature of the gas is 1197.02 K
Answer:
Explanation:
Given
mass flow rate=0.3 kg/s
diameter of pipe=5 cm
length of pipe=10 m
Inside temperature=22
Pipe surface =100
Temperature drop=30
specific heat of vapor(c)=2190 J/kg.k
heat supplied 
Heat due to convection =hA(100-30)




19,710=122.538 h

Answer:
upward force acting = 261.6 N
Explanation:
given,
mass of gibbon = 9.4 kg
arm length = 0.6 m
speed of the swing
net force must provide

force of gravity = - mg

= 
= 
=9 x 29.067
= 261.6 N
upward force acting = 261.6 N