When multiplying numbers, the term with the least significant digits gives how many significant digits will be in the answer. 2.995 has the least with 4 "sig figs", so the answer will have 4 significant digits as well:
2.995/0.16685 = <span>17.9502547198
</span> ↑↑ ↑<span>↑
4 sig figs
So the answer is 17.95.</span>
m = given mass of gas = 3.82 g
M = molar mass of gas = ?
T = temperature of laboratory = 302 K
P = air pressure = 1.04 atm = 1.04 x 101325 pa
V = volume of gas = 0.854 L = 0.854 x 10⁻³ m³
using the ideal gas equation
PV = (m/M) RT
inserting the above values
(1.04 x 101325) (0.854 x 10⁻³) = (3.82/M) (8.314) (302)
M = 106.6 g
hence the molar mass of the gas comes out to be 106.6 g
I'm going to suppose you want the adjusted chemical reaction, using the formulas of the compounds. You can see it in the image attached.
It is most likely A since gas particles do not have a fixed volume.
Answer:
a) But-1-ene
b) E-But-2-ene
c) Z-But-2-ene
d) 2-Methylpropene
Explanation:
In this case, if we want to draw the <u>isomers</u>, we have to check the<u> formula </u>
in this formula we can start with a linear structure with 4 carbons. We also know that we have a double bond, so we can put this double bond between carbons 1 and 2 and we will obtain <u>But-1-ene.</u>
<u />
For the next isomer, we can move the double bond to carbons 2 and 3. When we do this can have two structures. When the methyl groups are placed on the same side we will obtain <u>Z-But-2-ene</u>. When the methyls groups are placed on opposite sides we will obtain <u>E-But-2-ene.</u>
<u />
Finally, we can use a linear structure of three carbons with a methyl group in the middle with a double bond, and we will obtain <u>2-Methylpropene.</u>
<u />
See figure 1 to further explanations.
I hope it helps!
<u />
<u />