<span>We can think this through intuitively. A frequency of 256 Hz means that the wave has 256 cycles each second. If the wavelength is 1.33 meters, then there are 256 of them each second. Therefore, we just need to multiply the wavelength by the frequency to find the speed of sound. (Note that the units Hz = 1 / s)
v = (frequency) x (wavelength)
v = (256 Hz) x (1.33 m)
v = 340.5 m/s
The speed of sound in the vicinity of the fork is 340.5 m/s</span>
Brian’s Complexity Brian’s Complexity Brian’s Complexity Brian’s Complexity
Answer:
i am answering the same question 3rd time
please find the answer in the images attached.
Answer:
A) 12P
Explanation:
The power produced by a force is given by the equation

where
W is the work done by the force
T is the time in which the work is done
At the beginning in this problem, we have:
W = work done by the force
T = time taken
So the power produced is

Later, the force does six times more work, so the work done now is

And this work is done in half the time, so the new time is

Substituting into the equation of the power, we find the new power produced:

So, 12 times more power.
Answer:
98.15 lb
Explanation:
weight of plane (W) = 5,000 lb
velocity (v) = 200 m/h =200 x 88/60 = 293.3 ft/s
wing area (A) = 200 ft^{2}
aspect ratio (AR) = 8.5
Oswald efficiency factor (E) = 0.93
density of air (ρ) = 1.225 kg/m^{3} = 0.002377 slugs/ft^{3}
Drag = 0.5 x ρ x
x A x Cd
we need to get the drag coefficient (Cd) before we can solve for the drag
Drag coefficient (Cd) = induced drag coefficient (Cdi) + drag coefficient at zero lift (Cdo)
where
- induced drag coefficient (Cdi) =
(take note that π is shown as n and ρ is shown as
)
where lift coefficient (Cl)=
=
= 0.245
therefore
induced drag coefficient (Cdi) =
=
= 0.0024
- since the airplane flies at maximum L/D ratio, minimum lift is required and hence induced drag coefficient (Cdi) = drag coefficient at zero lift (Cdo)
- Cd = 0.0024 + 0.0024 = 0.0048
Now that we have the coefficient of drag (Cd) we can substitute it into the formula for drag.
Drag = 0.5 x ρ x
x A x Cd
Drag = 0.5 x 0.002377 x (293.3 x 293.3) x 200 x 0.0048 = 98.15 lb