answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
julsineya [31]
2 years ago
15

A 15.0 mL sample of 0.013 M HNO3 is titrated with 0.017 M CH$NH2 which he Kb=3.9 X 10-10. Determine the pH at these points: At t

he beginning (before base is added) pH = -log (H₂O) = -log(0.013) - 1-800 1.013) = 1.886 After adding 10.0 mL of C2H3NH2
Chemistry
1 answer:
kramer2 years ago
4 0

<u>Answer:</u> The pH of the solution in the beginning is 1.89 and the pH of the solution after the addition of base is

<u>Explanation:</u>

  • <u>For 1:</u> At the beginning

To calculate the pH of the solution, we use the equation:

pH=-\log[H^+]

We are given:

Nitric acid is a monoprotic acid and it dissociates 1 mole of hydrogen ions. So, the concentration of hydrogen ions is 0.013 M

[H^+]=0.013M

Putting values in above equation, we get:

pH=-\log(0.013)\\\\pH=1.89

  • <u>For 2:</u>

To calculate the number of moles, we use the equation:  

\text{Molarity of the solution}=\frac{\text{Moles of solute}\times 1000}{\text{Volume of solution (in mL)}}

  • <u>For nitric acid:</u>

Molarity of nitric acid solution = 0.013 M

Volume of solution = 15 mL

Putting values in above equation, we get:

0.013M=\frac{\text{Moles of }HNO_3\times 1000}{15}\\\\\text{Moles of }HNO_3=1.95\times 10^{-4}mol

  • <u>For methylamine:</u>

Molarity of methylamine solution = 0.017 M

Volume of solution = 10 mL

Putting values in above equation, we get:

0.017M=\frac{\text{Moles of }CH_3NH_2\times 1000}{10}\\\\\text{Moles of }CH_3NH_2=1.7\times 10^{-4}mol

  • The chemical equation for the reaction of nitric acid and methylamine follows:

                       HNO_3+CH_3NH_2\rightarrow CH_3NH_3^++NO_3^-

As, the mole ratio of nitric acid and methyl amine is 1 : 1. So, the limiting reagent will be the reactant whose number of moles are less, which is methyl amine.

By Stoichiometry of the reaction:

1 mole of methyl amine produces 1 mole of CH_3NH_3^+

So, 1.7\times 10^{-4}mol of methyl amine will produce = \frac{1}{1}\times 1.7\times 10^{-4}=1.7\times 10^{-4}\text{ moles of }CH_3NH_3^+

To calculate the pK_b of base, we use the equation:

pK_b=-\log(K_b)

where,

K_b = base dissociation constant = 3.9\times 10^{-10}

Putting values in above equation, we get:

pK_b=-\log(3.9\time 10^{-10})\\\\pK_b=9.41

  • To calculate the pOH of basic buffer, we use the equation given by Henderson Hasselbalch:

pOH=pK_b+\log(\frac{[salt]}{[base]})

pOH=pK_b+\log(\frac{[CH_3NH_3^+]}{[CH_3NH_2]})

We are given:

pK_b=9.41

[CH_3NH_3^+]=\frac{1.7\times 10^{-4}}{10+15}=6.8\times 10^{-6}M

[CH_3NH_2]=\frac{1.7\times 10^{-4}}{10+15}=6.8\times 10^{-6}M

Putting values in above equation, we get:

pOH=9.41+\log(\frac{6.8\times 10^{-6}}{6.8\times 10^{-6}})\\\\pOH=9.41

To calculate pH of the solution, we use the equation:

pH+pOH=14\\pH=14-9.41=4.59

Hence, the pH of the solution is 4.59

You might be interested in
How many moles of n2(g) would contain exactly 4.0 moles of nitrogen atoms?
VladimirAG [237]
Each nitrogen molecule had 2 Nitrogen atoms.
So 2 moles of nitrogen gas molecules will have 4 moles of nitrogen atoms.Answer is 2moles
4 0
2 years ago
Read 2 more answers
Copper has been used for thousands of years, either as a pure metal or in alloys. It is frequently used today in the production
motikmotik

The question is incomplete, the correct question is:

Copper has been used for thousands of years, either as a pure metal or in alloys. It is frequently used today in the production of wires and cables. Copper can be obtained through smelting or recycling. Determine the energy associated with each of these processes in order to recycle 1.08 mol Cu. The smelting of copper occurs by the balanced chemical equation: CuO(s)+CO(g) Cu(s)+CO2?(g) where ?H°f, CuO is = -155 kJ/mol. Assume the process of recycling copper is simplified to just the melting of the solid Cu starting at 25°C. The melting point of Cu is 1084.5°C with ?H°fus = 13.0 kJ/mol and a molar heat capacity, cp,Cu = 24.5 J/mol·°C.

Enthalpy change for the reaction recovering ?

Cu from CuO Energy for recycling Cu?

Answer:

Energy for recovering Cu from CuO = - 138. 24kJ

the total energy for recycling Cu is 42.07kJ

Explanation:

CuO(s) + CO(g) - - - - - - - > Cu(s) + CO2(g)

ΔHrxn = ΔHf(products) - ΔHf(reactants)

= ΔHf(CO2) - (ΔHf(CO)) + Δ Hf(CuO))

= - 393.5 kJ/mol - (-110.5 kJ/mol + ( - 155 kJ/mol)

= - 393.5 kJ/mol + 265.5 kJ/mol

= - 128 kJ/mol

for 1.08 mol of Cu

ΔH= - 128 kJ/mol × 1.08 mol = - 138. 24 kJ

Therefore,

Energy for recovering Cu from CuO = - 138. 24kJ

Part.2 :-

Total energy required = Heat required to raise the temperature of Cu from 25°C to 1084.5°C (q1) + Heat required to melt Cu at 1084.5°C(q2)

q1= n × ΔT × Cp

q1 = 1.08 mol × (1084.5°C - 25°C) × 24.5 J/mol 0C

q1 = 28.03 kJ

q2 = ΔHfus × n

q2 = 13.0 kJ/mol × 1.08 mol

q2 = 14.04kJ

Therefore,

Energy for recycling Cu = 28.03 kJ + 14.04kJ = 42.07kJ

Therefore, the total energy for recycling Cu is 42.07kJ

4 0
2 years ago
Determine the mass of oxygen in a 7.20 g sample of Al2(SO4)3.
Mekhanik [1.2K]

Given:

7.20 g sample of Al2(SO4)3

Required:

Mass of oxygen

Solution:

                Since you are not given a chemical reaction, just base your solution to the chemical formula given.

Molar mass of Al2(SO4)3 = 342.15 g/mol

7.20 g Al2(SO4)3 (1 mol/342.15g)(3mol O/2 mol Al)(1 mol O2/1/2 mol O2)(32g O2/1mol O2) = 4.04 g O2

5 0
2 years ago
Read 2 more answers
In May 2016, William Trubridge broke the world record in free diving (diving underwater without the use of supplemental oxygen)
Maru [420]

Answer:

The volume that this same amount of air will occupy in his lungs when he reaches a depth of 124 m is - 0.27 L.

Explanation:

Using Boyle's law  

{P_1}\times {V_1}={P_2}\times {V_2}

Given ,  

V₁ = 3.6 L  

V₂ = ?

P₁ = 1.0 atm

P₂ = 13.3 atm (From correct source)

Using above equation as:

{P_1}\times {V_1}={P_2}\times {V_2}

{1.0\ atm}\times {3.6\ L}={13.3\ atm}\times {V_2}

{V_2}=\frac{{1.0}\times {3.6}}{13.3}\ L

{V_2}=0.27\ L

The volume that this same amount of air will occupy in his lungs when he reaches a depth of 124 m is - 0.27 L.

7 0
2 years ago
A solution is made by dissolving 58.125 g of sample of an unknown, nonelectrolyte compound in water. The mass of the solution is
e-lub [12.9K]

Answer:

molecular weight (Mb) = 0.42 g/mol

Explanation:

mass sample (solute) (wb) = 58.125 g

mass sln = 750.0 g = mass solute + mass solvent

∴ solute (b) unknown nonelectrolyte compound

∴ solvent (a): water

⇒ mb = mol solute/Kg solvent (nb/wa)

boiling point:

  • ΔT = K*mb = 100.220°C ≅ 373.22 K

∴ K water = 1.86 K.Kg/mol

⇒ Mb = ? (molecular weight) (wb/nb)

⇒ mb = ΔT / K

⇒ mb = (373.22 K) / (1.86 K.Kg/mol)

⇒ mb = 200.656 mol/Kg

∴ mass solvent = 750.0 g - 58.125 g = 691.875 g = 0.692 Kg

moles solute:

⇒ nb = (200.656 mol/Kg)*(0.692 Kg) = 138.83 mol solute

molecular weight:

⇒ Mb = (58.125 g)/(138.83 mol) = 0.42 g/mol

8 0
2 years ago
Other questions:
  • Examine the sets of bonds given in the choices. which one arranges the bonds in order of increasing (shortest to longest) bond l
    11·1 answer
  • Write the symbol for the monatomic ion that has a charge of 1– and the condensed electron configuration [ne]3s23p6.
    5·2 answers
  • What type of star has an absolute brightness of 1 and a surface temperature around 7,500 °C?
    10·2 answers
  • Draw a structure for the product of nucleophilic substitution obtained on solvolysis of tert−butyl bromide in methanol, and arra
    11·2 answers
  • Which sentence best explains the high melting point, boiling point, and surface tension of water? A. The hydrogen atom on each w
    15·2 answers
  • Hydrogen is unique among the elements because ________. 1. It is not really a member of any particular group. 2. Its electron is
    7·1 answer
  • Boris is interested in conducting his first "real" scientific research. However, he is a bit overwhelmed with all of the possibl
    11·1 answer
  • What is the concentration of FeCl3 in a solution prepared by dissolving 10.0 g of FeCl3 in enough water to make 275 mL of soluti
    15·1 answer
  • What mass of carbon monoxide is produced when 1.50 moles of oxygen react completely in the following equation? 2C + O₂ → 2CO
    9·1 answer
  • Calculate the number of total atoms in 195 grams of Ni(OH)2. Use 6.022x10^23mol-1 for Avogadro’a number
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!