Answer:
57.94°
Explanation:
we know that the expression of flux

where Ф= flux
E= electric field
S= surface area
θ = angle between the direction of electric field and normal to the surface.
we have Given Ф= 78 
E=
S=
= 
=0.5306
θ=57.94°
Answer:1. Roche limit
2.hydrogen
3.atmosphere
4.mercury
5.venus
6.when an object passes the Roche limit, the strength of gravity on the object increases. If the density of the planet is higher, then the object can break up farther away from the planet. If the density is lower, then the Roche limit is located closer to the planet
7.Farther our in the solar system, beyond the frost line, hydrogen was at a low enough temperature that it could condense. This allowed hydrogen to accumulate under gravity, eventually forming the Jovian planets
Explanation:
Answer:
a) W=2.425kJ
b) 
c) 
d) Q=-2.425kJ
Explanation:
a)
First of all, we need to do a drawing of what the system looks like, this will help us visualize the problem better and take the best possible approach. (see attached picture)
The problem states that this will be an ideal system. This is, there will be no friction loss and all the work done by the object is transferred to the water. Therefore, we need to calculate the work done by the object when falling those 10m. Work done is calculated by using the following formula:

Where:
W=work done [J]
F= force applied [N]
d= distance [m]
In this case since it will be a vertical movement, the force is calculated like this:
F=mg
and the distance will be the height
d=h
so the formula gets the following shape:

so now e can substitute:

which yields:
W=2.425kJ
b) Since all the work is tansferred to the water, then the increase in internal energy will be the same as the work done by the object, so:

c) In order to find the final temperature of the water after all the energy has been transferred we can make use of the following formula:

Where:
Q= heat transferred
m=mass
=specific heat
= Final temperature.
= initial temperature.
So we can solve the forula for the final temperature so we get:

So now we can substitute the data we know:

Which yields:

d)
For part d, we know that the amount of heat to be removed for the water to reach its original temperature is the same amount of energy you inputed with the difference that since the energy is being removed this means that it will be negative.

The question for this problem would be the minimum headphone delay, in ms, that will cancel this noise.
The 200 Hz. period = (1/200) = 0.005 sec. It will need to be delayed by 1/2, so 0.005/2, that is = 0.0025 sec. So converting sec to ms, will give us the delay of:Delay = 2.5 ms.