Answer:
It is a superordinate goal because both teams could have helped with the task.
Explanation:
If both teams pushed then they could have made it happened
Answer:
t = 25 seconds
Explanation:
Given that,
Distance, d = 115 m
Initial speed, u = 4.2 m/s
Final speed, v = 5 m/s
We need to find the time taken in increasing the speed.
We know that,
Acceleration,
....(1)
The third equation of kinematics is as follows :

Hence, it will take 25 seconds to increase the speed.
Answer:
the internal energy of the gas is 433089.52 J
Explanation:
let n be the number of moles, R be the gas constant and T be the temperature in Kelvins.
the internal energy of an ideal gas is given by:
Ein = 3/2×n×R×T
= 3/2×(5.3)×(8.31451)×(24 + 273)
= 433089.52 J
Therefore, the internal energy of this gas is 433089.52 J.
Answer:
El peso del cartel es 397,97 N
Explanation:
La tensión dada en cada segmento del cable = 2000 N
El desplazamiento vertical del cable = 50 cm = 0,5 m
La distancia entre los polos = 10 m
La posición del letrero en el cable = En el medio = 5
El ángulo de inclinación del cable a la vertical = tan⁻¹ (0.5 / 5) = 5.71 °
El peso del letrero = La suma del componente vertical de la tensión en cada lado del letrero
El peso del signo = 2000 × sin (5.71 grados) + 2000 × sin (5.71 grados) = 397.97 N
El peso del signo = 397,97 N.
Answer:
155.38424 K
2.2721 kg/m³
Explanation:
= Pressure at reservoir = 10 atm
= Temperature at reservoir = 300 K
= Pressure at exit = 1 atm
= Temperature at exit
= Mass-specific gas constant = 287 J/kgK
= Specific heat ratio = 1.4 for air
For isentropic flow

The temperature of the flow at the exit is 155.38424 K
From the ideal equation density is given by

The density of the flow at the exit is 2.2721 kg/m³