Hui4itfuwrtbitbwibrknfl3unfn6io4gnig4klg4mgmyy4m;l3
Answer:

Explanation:
Given that:
mass of object A, 
mass of object B, 
speed of object A, 
So, according to the conservation of momentum, the momentum before collision is equal to the momentum after conservation.




Answer:
The speed at the end of the track = 27 m/s
The acceleration = 1.2 m/s²
Please find the Δx vs Δt, v vs Δt, a vs Δt
Explanation:
We have;
x = u·t + 1/2·a·t²
Where;
x = The distance = 300 m
u = The initial velocity = 0 m/s (Ball at rest)
t = The time taken = 22.4 s
Therefore;
300 = 0 + 1/2×a×22.4²
a = 2×300/22.4² = 1.19579 ≈ 1.2 m/s²
v = u + a×t
∴ v = 0 + 1.2 × 22.4 = 26.88 ≈ 27 m/s
Part of the table of values is as follows;
t, x, v
0, 0, 0
0.4, 0.095663, 0.478316
0.8, 0.382653, 0.956632
1.2, 0.860969, 1.434948
1.6, 1.530611, 1.913264
2, 2.39158, 2.39158
2.4, 3.443875, 2.869896
2.8, 4.687497, 3.348212
3.2, 6.122445, 3.826528
3.6, 7.748719, 4.304844
~Formula: Voltage= current• resistance
(V= Ir)
~Using this formula, plug in the numbers from the equation into the formula
~5=25i
~Now you have a one-step equation
~Divide by 25 on both sides and you should get your answer:
~I= 0.2 (which means current is 0.2)
Answer:
Spring constant, k = 0.3 N/m
Explanation:
It is given that,
Force acting on DNA molecule, 
The molecule got stretched by 5 nm, 
Let k is the spring constant of that DNA molecule. It can be calculated using the Hooke's law. It says that the force acting on the spring is directly proportional to the distance as :



k = 0.3 N/m
So, the spring constant of the DNA molecule is 0.3 N/m. Hence, this is the required solution.