Answer:
The distance the planet Neptune travels in a single orbit around the Sun is <em>60.2π </em><em>AU.</em>
Explanation:
As it is given that the Neptune's orbit is circular, the formula that we have to use is the circumference of a circle in order to find the distance it travels in a single orbit around the Sun. In other words, you can say that the circumference of the circle is <em>equivalent</em> to the distance it travels around the Sun in a single orbit.
<em>The circumference of the circle = Distance Travelled (in a single orbit) = 2*π*R ---- (A)</em>
Where,
<em>R = Orbital radius (in this case) = 30.1 AU</em>
<em />
Plug the value of R in the equation (A):
<em>(A) => The circumference of the circle = 2*π*(30.1)</em>
<em> The circumference of the circle = </em><em>60.2π</em>
Therefore, the distance the planet Neptune travels in a single orbit around the Sun is <em>60.2π </em><em>AU.</em>
Answer:
0.5 m
Explanation:
Givens:
ym1 = 2.5 mm
ym2 = 4.5 mm
Ф_1=π / 4
Ф_2=π / 2
We have 2 ways to solve this problem. The first one given that the 2 waves have the frequency then we know that the resultant wave amplitude is
Ym = (ym1 + ym2)cos(Ф_2/2)
By substitution we have
Ym= (0.025 + 0.045)cos(π/4) = 0.496 m
The second one is it treat them as Phasors where the phase between them is Ф_2=π / 2 Therefore
Ym^2=(ym1^2+ym2^2)
So we have Ym=√0.025^2+0.045^2
= 0.5 m
#1
so mass number = 238
mass number = protons + neutrons
given that
neutrons = 146
238 = protons + 146
protons = 92
#2

so mass number = 241
mass number = protons + neutrons
given that
Protons = 94
241 = 94 + neutrons
neutrons = 147
#3

A = mass number
Protons = 90
Neutrons = 137
A = protons + Neutrons
A = 90 + 137 = 227
The formula for kinetic energy is

. Thus, the equation for velocity is

.
Color <span>is a physical property of all visible light determined by the light's frequency and visible to the human eye.</span>