answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Brums [2.3K]
2 years ago
14

A bulldozer attempts to drag a log weighing 500 N along the rough horizontal ground. The cable attached to the log makes an angl

e of 30° above the ground. The coefficient of static friction between the log and the ground is 0.50, and the coefficient of kinetic friction is 0.35. What minimum tension is required in the cable in order for the log to begin to slide?
Physics
1 answer:
Gemiola [76]2 years ago
6 0

Answer:

T= 224.01 N

Explanation:

in imminent motion we have to :

  • The frictional force reaches its maximum value
  • The system is in balance of forces

Data

W=  500 N :  weight of the log

μs = 0.5

μk = 0.35

α = 30°above the ground :  angle of the cable attached to the log

Newton's first law to the log:

∑F =0 Formula (1)

∑F : algebraic sum of the forces in Newton (N)

Forces acting on the log

T: cable tension for impending movement

N: normal force

W : weight

f: frictional force , f= μsN

We apply the formula (1)

∑Fx=0

Tx-f = 0

Tcosα-μsN=0

Tcos30°-0.5N=0 Equation (1)

∑Fy=0

N+Ty-W=0

N+Tsin30°-500=0

N= 500-Tsin30°  Equation (2)

We replace the value of N of the Equation  (2) in the equation (1)

Tcos30°-0.5(500-Tsin30°) = 0

Tcos30°+0.5Tsin30° = 0.5*500

T( cos30°+0.5*sin30°) = 250

(1.116) T = 250

T= 250/1.116

T= 224.01 N

You might be interested in
Short-range forecasts tends to ________ longer-range forecasts.
spin [16.1K]
<span>Short-range forecasts are more accurate than longer range ones. Short term forecasts may use mathematical techniques such as moving averages and, exponential smoothing. Longer term forecasts not only use different methodologies, such as qualitative vs. quantitative, they also tend to consider different issues.</span>
5 0
2 years ago
A crow drops a 0.11kg clam onto a rocky beach from a height of 9.8m. What is the kinetic energy of the clam when it is 5.0m abov
svp [43]

Answer:

The kinetic energy of the clam at a height of 5.0 m is 5.19 J and the speed of the clam at that height is 9.71 m/s.

<u>Explanation: </u>

<em>Mechanical energy is constant throughout the travel</em>, we know that <em>mechanical energy is calculated by adding potential energy and kinetic energy</em>. Potential energy = m \times g \times h, Kinetic energy = \frac{1}{2} \times m \times v^{2} and Mechanical energy = m \times g \times h+\frac{1}{2} \times m \times v^{2} Kinetic energy is zero at initial point. Now mechanical energy of clam with m=0.11kg,g=9.81\frac{m}{s^{2}},h=9.8 m is = 0.11×9.81×9.8 = 10.58 J.

Mechanical energy of clam at a height of 5.0 m = 0.11 \times 9.81 \times 5+\frac{1}{2} \times m \times v^{2} =5.39+\frac{1}{2} \times m \times v^{2}. We know that mechanical energy is constant hence, <em>mechanical energy of clam at height 9.8 m is equal to mechanical energy at height 5.0 m</em>. This is represented as following

10.58 = 5.39+\frac{1}{2} \times m \times v^{2} 10.58 – 5.39 =\frac{1}{2} \times m \times v^{2}  5.19 = \frac{1}{2} \times m \times v^{2} kinetic energy of the clam is 5.19 J.

Now speed of the clam at height 5.0 m is 5.19 = \frac{1}{2} \times 0.11 \times v^{2} \frac{5.19 \times 2}{0.11}=v^{2} 94.36 = v^{2} \sqrt{94.36}=v \quad v= 9.71 m/s. The speed of the clam is 9.71 m/s.

6 0
2 years ago
Suppose the gas resulting from the sublimation of 1.00 g carbon dioxide is collected over water at 25.0◦c into a 1.00 l containe
AlexFokin [52]

Answer:

0.56 atm

Explanation:

First of all, we need to find the number of moles of the gas.

We know that

m = 1.00 g is the mass of the gas

Mm=44.0 g/mol is the molar mass of the carbon dioxide

So, the number of moles of the gas is

n=\frac{m}{M_m}=\frac{1.00 g}{44.0 g/mol}=0.023 mol

Now we can find the pressure of the gas by using the ideal gas equation:

pV=nRT

where

p is the pressure

V=1.00 L = 0.001 m^3 is the volume

n = 0.023 mol is the number of moles

R=8.314 J/mol K is the gas constant

T=25.0^{\circ}+273=298 K is the temperature of the gas

Solving the equation for p, we find

p=\frac{nRT}{V}=\frac{(0.023 mol)(8.314 J/mol K)(298 K)}{0.001 m^3}=5.7 \cdot 10^4 Pa

And since we have

1 atm = 1.01\cdot 10^5 Pa

the pressure in atmospheres is

p=\frac{5.7\cdot 10^4 Pa}{1.01\cdot 10^5 Pa/atm}=0.56 atm

5 0
2 years ago
Two objects (45.0 and 21.0 kg) are connected by a massless string that passes over a massless, frictionless pulley. The pulley h
Oksanka [162]

a) The acceleration of the objects is 3.56 m/s^2

b) The tension in the string is 280.8 N

Explanation:

a)

We start by writing the equations of motion for the two masses attached to the pulley.

For the heavier mass, we have:

m_1 g - T = m_1 a (1)

where

m_1 = 45.0 kg is the mass

g=9.8 m/s^2 is the acceleration of gravity

T is the tension in the string

a is the acceleration of the system (here we assumed that the heavier mass accelerates downward)

For the lighter mass, we have

T-m_2 g = m_2 a (2)

where

T is the tension in the string

m_2 = 21.0 kg is the mass

g=9.8 m/s^2 is the acceleration of gravity

a is the acceleration of the system (here we assumed that the lighter mass accelerates upward)

From (1) we get

T=m_1g - m_1 a

And substituting into (2),

(m_1 g - m_1 a)-m_2 g = m_2 a\\(m_1 -m_2)g  = (m_1+m_2)a\\a=\frac{m_1 - m_2}{m_1+m_2}g=\frac{45-21}{45+21}(9.8)=3.56 m/s^2

b)

From the previous part of the problem we got an expression for the tension in the string:

T=m_1g - m_1 a

Where we have

m_1 = 45.0 kg

g=9.8 m/s^2

a=3.56 m/s^2 is the acceleration, found in part a)

Susbtituting, we find

T=(45.0)(9.8)-(45.0)(3.56)=280.8 N

Learn more about forces and acceleration:

brainly.com/question/11411375

brainly.com/question/1971321

brainly.com/question/2286502

brainly.com/question/2562700

#LearnwithBrainly

4 0
2 years ago
what is a possible unit for the product VI, where V is the potential difference across a resistor and I is the current through t
liq [111]
Recall this equation for a device in a direct current circuit:
P = IV
P is the power dissipated by the device, I is the current through the device, and V is the voltage drop of the device.

If we choose to use the ampere as the unit of current and the volt as the unit of voltage, then the product of the current and the voltage will give the power with watts as the unit.
5 0
2 years ago
Other questions:
  • You move a 2.5 kg book from a shelf that is 1.2 m above the ground to a shelf that is 2.6 m above the ground. What is the change
    7·1 answer
  • You are driving due north on i-81 to come to jmu with a speed of 10 m/s, suddenly you realize you forgot your book. You make a u
    12·1 answer
  • Type the correct answer in each box. Use numerals instead of words. If necessary, use / for the fraction bar. In a survey conduc
    14·1 answer
  • Suppose 1 kg of Hydrogen is converted into Helium. a) What is the mass of the He produced? b) How much energy is released in thi
    11·2 answers
  • An astronaut is in equilibrium when he is positioned 140 km from the center of asteroid C and 581 km from the center of asteroid
    6·1 answer
  • An orienteer runs 400m directly east and then 500m to the northeast (at a 45 degree andle from due east and from due north). Pro
    5·1 answer
  • Students were discussing a problem in which the class was asked to find the acceleration of a cart rolling up and down an inclin
    11·1 answer
  • If you're swimming underwater and knock two rocks together, you will hear a very loud noise. But if your friend above the water
    7·1 answer
  • The natural direction of heat flow between two reservoirs depends on ....​
    11·1 answer
  • Un pendule est constitue par une masse ponctuelle m= 0,1kg accrocher a un fil sans masse de longueur L = 0,4 m on ecarte ce pend
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!