answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
irakobra [83]
2 years ago
4

One can write v1f − v2f = ǫ (v2i − v1i) where ǫ takes a value between 0 (perfectly inelastic) and 1 (perfectly elastic) for most

collisions. Suppose two pucks sliding on frictionless ice collide head-on with a coefficient of restitution ǫ = 0.73. They have masses and initial velocities of m1 = 0.38 kg, m2 = 0.15 kg, v1i = 1 m/s, and v2i = −5 m/s. What is the velocity of puck 1 after the collision? Answer in units of m/s.
Physics
2 answers:
Luba_88 [7]2 years ago
6 0

Answer:

Explanation:

solution

kkurt [141]2 years ago
3 0

Answer

given,

ǫ = 0.73

m₁ = 0.38 kg         m₂   = 0.15 kg

v₁i  = 1 m/s,             v₂i = −5 m/s

applying conservation equation of momentum

m_1v_{1i} + m_2v_{2i} = m_1v_{1f} + m_2v_{2f}

(0.38)(1) + (0.15)(-5) = 0.38v_{1f} + 0.15v_{2f}

0.38v_{1f} + 0.15v_{2f} = -0.37

v_{1f} − v_{2f} = ǫ (v_{2i} − v_{1i})

ǫ = \dfrac{v_{2f} - v_{1f}}{v_{1i} - v_{2i})}

0.73 = \dfrac{v_{2f} - v_{1f}}{1-(-5))}

v_{2f} − v_{1f} = 4.38

on solving

v_{1f} = -1.938\ m/s

v_{2f} = 2.442\ m/s

You might be interested in
The wavelength of some red light is 700.5 nm. what is the frequency of this red light?
Alborosie
The frequency of the red light is 428 terahertz. To get the value of the red light's frequency, use the formula F = velocity/wavelength. The velocity of light is 3.00 x 10^8 m/s. For easier computation, convert 700.5 nanometers to meter. 1 nanometer is equal to 1 x 10^-9 meters. 700.5 nanometers is equal to 7.005 x 10^-7 meters. Divide the velocity 3.00 x 10^8m/s by wavelength 7.005 x 10^-7 meters. The result will be 4.28 x 10^14 Hertz or 428 terahertz.
4 0
2 years ago
A 4.00-kg mass is attached to a very light ideal spring hanging vertically and hangs at rest in the equilibrium position. The sp
Ahat [919]

Answer:

|v| = 8.7 cm/s

Explanation:

given:

mass m = 4 kg

spring constant k = 1 N/cm = 100 N/m

at time t = 0:

amplitude A = 0.02m

unknown: velocity v at position y = 0.01 m

y = A cos(\omega t + \phi)\\v = -\omega A sin(\omega t + \phi)\\ \omega = \sqrt{\frac{k}{m}}

1. Finding Ф from the initial conditions:

-0.02 = 0.02cos(0 + \phi) => \phi = \pi

2. Finding time t at position y = 1 cm:

0.01 =0.02cos(\omega t + \pi)\\ \frac{1}{2}=cos(\omega t + \pi)\\t=(acos(\frac{1}{2})-\pi)\frac{1}{\omega}

3. Find velocity v at time t from equation 2:

v =-0.02\sqrt{\frac{k}{m}}sin(acos(\frac{1}{2}))

5 0
2 years ago
Read 2 more answers
A drag racer accelerates from rest at an average rate of +13.2 mls for a distance of 100. m. The driver coasts for 0.5 then uses
gtnhenbr [62]

Complete Question:

A drag racer accelerates from rest at an average rate of +13.2 m/s² for a distance of 100. m. The driver coasts for 0.5 s then uses the brakes and parachute to decelerate until the end of the track. If the total length of the track is 180 m, what minimum deceleration rate must the racer have in order to stop prior to the the end of the track?

Answer:

-31.92 m/s²

Explanation:

The drag races do a retiling uniform variated movement. There are 3 steps in the movement, first, it accelerates from rest until 100 m, second it coasts to 0.5 s, and then it decelerates. So, let's analyze each one of the steps:

Step 1

The initial velocity is v0 = 0 (because it was at rest), the acceleration is +13.2 m/s², and the distance ΔS = 100.0 m, so the final velocity, v, is:

v² = v0² + 2aΔS

v² = 2*13.2*100

v² = 2640

v = √2640

v = 51.38 m/s

Step 2

Know it's initial velocity is 51.38 m/s, it take 0.5s, and has the same acceleration, so, after 0.5 s, the velocity will be:

v = v0 + at

v = 51.38 + 13.2*0.5

v = 57.98 m/s

Thus, the distance it travels is:

v² = v0² + 2aΔS

57.98² = 51.38² + 2*13.2*ΔS

3361.6804 = 2639.9044 + 26.4ΔS

26.4ΔS = 721.776

ΔS = 27.34 m

Step 3

The initial velocity of the drag racer is 57.98 m/s, and it travels the final distance of the track: 180 - 100 - 27.34 = 52.66 m. So, when it stops, its final velocity will be 0. The minimum deceleration must be the one that it would stop at the end of the track (less than that it would cross the final track):

v² = v0² + 2aΔS

0 = 57.98² + 2a*52.66

-105.32a = 3361.6804

a = - 31.92 m/s²

4 0
2 years ago
The thrust of a certain boat’s engine generates a power of 10kW as the boat moves at constant speed 10ms through the water of a
Lunna [17]

Answer:

The change in power is 4400 W.

Explanation:

Given that,

Power = 10 kW

Speed = 10 m/s

Increases speed = 12 m/s

Given equation is,

F=kv

We know that,

The power is,

P=Fv

Put the value of F into the formula

P=(kv)v

P=kv^2

P\propto v^2

We need to calculate the new power

Using formula for power

\dfrac{P}{P'}=\dfrac{v^2}{v'^2}

Put the value into the formula

\dfrac{10}{P'}=(\dfrac{10}{12})^2

P'=(\dfrac{12}{10})^2\times10

P'=14.4\ kW

We need to calculate the change in power

Using formula of change in power

\Delta P=P'-P

Put the value into the formula

\Delta P=14.4-10

\Delta P=4.4\ kW

\Delta P=4.4\times1000

\Delta P=4400\ W

Hence, The change in power is 4400 W.

6 0
3 years ago
A hiker caught in a rainstorm absorbs 1.00 L of water in her clothing. If it is windy so that the water evaporates quickly at 20
masya89 [10]

Answer:

(A) Q = 2.26×10⁶J

(B) ΔT = 9°C

(C)

Explanation:

We have been given the mass of the hiker, the volume of water from which we can calculate the mass knowing that the density if water is 1000kg/m³.

Evaporation is a phase change and occurs at a constant temperature. We would use the latent heat of vaporization to calculate the amount of heat evaporated.

We would then equate this to the heat change it brings about in the hiker's body and then calculate the temperature drop.

See the attachment below for full solution.

6 0
2 years ago
Other questions:
  • Why are experiments often performed in laboratories?
    7·1 answer
  • Liz puts a 1 kg weight and a 10 kg on identical sleds. She then applies a 10N force to each sled. Describe why the smaller weigh
    14·2 answers
  • What would happen to the apparent change in mass if the direction of the current is reversed?
    12·1 answer
  • Which magnetic property best describes a magnet’s ability to act at a distance? Magnets are dipolar. Magnets attract only certai
    14·2 answers
  • A bee wants to fly to a flower located due North of the hive on a windy day. The wind blows from East to West at speed 6.68 m/s.
    8·1 answer
  • A car is driving around a banked curve, with the road surface at an angle of 10.0º. If the radius of curvature of the road is 30
    14·1 answer
  • Question must be solved using only symbolic algebra.During the experiment if you could triple the breakaway magnetic force with
    7·1 answer
  • A hockey puck of mass m1=165 g slides from left to right with an initial velocity of 15.5 m/s. It collides head on with a second
    14·1 answer
  • In the image below, which wire loop is experiencing the greatest magnetic flux?
    14·2 answers
  • Tech A says that some electric actuators are positioned by an A/C ECU which checks the air flow with sensors. Tech B says that e
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!