Answer:
The answer to your question is below
Explanation:
An atom with four electrons in its valence shell is capable of forming:
single bonds and atom with the described characteristics, can form 4 single bonds or a combination of single bonds and double or triple bonds. Ex alkanes
double bonds this atom can form one double bond and two single bonds or two double bonds. Ex alkenes
triple bonds this atom can form one triple bond and one single bond, Ex alkynes.
Each half-life results in ~50% (1/2) of the original element remaining.
7500/1250 = 6 half-lives, so 100(1/2)^6
= 100(0.015625)
= 1.5625% of the original element would remain
<span>There is only one formula to use and we should assume ideal gas. This equation is: PV=nRT. For the following questions manipulate this equation to get the answer.
1. n = PV/RT = (249*1000 Pa)(15.6 L)(1 m^3/1000 L)/(8.314 Pa-m^3/mol-K))(21+273) = 1.59 mol
2. P = nRT/V = (1.59)(8.314)(51+273)/(15.6/1000)(1000) = 274.55 kPa
3. Since the answer in #2 is more than 269 kPa, then the tires will likely burst.
4. Reduce pressure way below the limit 269 kPa.</span>
<span>Avogadro's number
represents the number of units in one mole of any substance. This has the value
of 6.022 x 10^23 units / mole. This number can be used to convert the number of
atoms or molecules into number of moles. We calculate as follows:
0.180 mol Br2 ( </span>6.022 x 10^23 molecules / mole ) = 1.084x10^23 molecules Br2
Answer:
The correct answer is 28.2 %.
Explanation:
Based on the given question, the partial pressures of the gases present in the trimix blend is 55 atm oxygen, 50 atm helium, and 90 atm nitrogen. Therefore, the sum of the partial pressure of gases present in the blend is,
Ptotal = PO2 + PN2 + PHe
= 55 + 90 + 50
= 195 atm
The percent volume of each gas in the trimix blend can be determined by using the Amagat's law of additive volume, that is, %Vx = (Px/Ptot) * 100
Here Px is the partial pressure of the gas, Ptot is the total pressure and % is the volume of the gas. Now,
%VO2 = (55/195) * 100 = 28.2%
%VN2 = (90/195) * 100 = 46%
%VHe = (50/195) * 100 = 25.64%
Hence, the percent oxygen by volume present in the blend is 28.2 %.