I don't know if you didn't gave a picture choice or if i didn't get the picture.
But lets call this atom A. Electron dot formula doesn't require Neutron and Protons, its main concern is valance elections.
So atom A has 5 electrons which means 2,3 it has 3 valance electrons. Its dot formula will become
:A.
I hope this helped.
Answer:
c) 22
Explanation:
Let's consider the following balanced equation.
N₂(g) + 3 H₂(g) ----> 2 NH₃(l)
According to the balanced equation, 34.0 g of NH₃ are produced by 1 mol of N₂. For 170 g of NH₃:

According to the balanced equation, 34.0 g of NH₃ are produced by 3 moles of H₂. For 170 g of NH₃:

The total gaseous moles before the reaction were 5.00 mol + 15.0 mol = 20.0 mol.
We can calculate the pressure (P) using the ideal gas equation.
P.V = n.R.T
where
V is the volume (50.0 L)
n is the number of moles (20.0 mol)
R is the ideal gas constant (0.08206atm.L/mol.K)
T is the absolute temperature (400.0 + 273.15 = 673.2K)

Following reactions are involved in present reaction
1) A<span>g+(aq) + Li(s) → Ag(s) + Li+(aq) </span><span>− 384.4kJ
2) </span><span>2Fe(s) + 2Na+(aq) → Fe2+(aq) + 2Na(s) + 392.3kJ
</span>3) <span>2K(s) + 2H2O(l) → 2KOH(aq) +H2(g) −393.1kJ
In above reaction, reaction 1 and 3 has negative value of </span>δh∘f, while reaction 2 has posiyive value of <span>δh∘f. As per the sign convention positive sign indicates that heat is given out during the reaction, while negative sign indicates heat is to be supplied for reaction to occur. In alternative words, product formed in reaction 2 is stable as compared to reactant. Hence, it is thermodynamically favorable. </span>
<span>1.05 g/ml * 1000 ml = 1050g/l because of 1g/ml = 1 kg/l
so, a/q
mass of 4.7 l of whole blood in pound =
4.7 * 1050 = 4935 g
so in pound
4935g = 10.87981p</span>
Carbonated water would be what you are looking for :v)