Answers are:
(1) KE = 1 kg m^2/s^2
(2) KE = 2 kg m^2/s^2
(3) KE = 3 kg m^2/s^2
(4) KE = 4 kg m^2/s^2
Explanation:
(1) Given mass = 0.125 kg
speed = 4 m/s
Since Kinetic energy = (1/2)*m*(v^2)
Plug in the values:
Hence:
KE = (1/2) * 0.125 * (16)
KE = 1 kg m^2/s^2
(2) Given mass = 0.250 kg
speed = 4 m/s
Since Kinetic energy = (1/2)*m*(v^2)
Plug in the values:
Hence:
KE = (1/2) * 0.250 * (16)
KE = 2 kg m^2/s^2
(3) Given mass = 0.375 kg
speed = 4 m/s
Since Kinetic energy = (1/2)*m*(v^2)
Plug in the values:
Hence:
KE = (1/2) * 0.375 * (16)
KE = 3 kg m^2/s^2
(4) Given mass = 0.500 kg
speed = 4 m/s
Since Kinetic energy = (1/2)*m*(v^2)
Plug in the values:
Hence:
KE = (1/2) * 0.5 * (16)
KE = 4 kg m^2/s^2
An activity that is relatively short in time <10 seconds and has few repetitions predominantly uses the ATP/PC energy system. The cellular respiration procedure that changes food energy into ATP which is a form of energy is largely reliant on oxygen obtainability. During exercise the source and request of oxygen obtainable to muscle is unnatural by period and strength and by the individual’s cardiorespiratory suitability level.
Steps of the ATP-PC system:
1. Primarily, ATP kept in the myosin cross-bridges which is microscopic contractile parts of muscle is broken down to issue energy for muscle shrinkage. This action consents the by-products of ATP breakdown which are the adenosine diphosphate and one single phosphate all on its own.
2. Phosphocreatine is then broken down by the enzyme creatine kinase into creatine and phosphate.
3. The energy free in the breakdown of PC permits ADP and Pi to rejoin creating more ATP. This newly made ATP can now be broken down to issue energy to fuel activity.
Answer:
The speed is 173 m/s.
Explanation:
Given that,
A = 47
B = 14
Length 1 urk = 58.0 m
An hour is divided into 125 time units named dorts.
3600 s = 125 dots
dorts = 28.8 s
Speed v= (25.0+A+B) urks/dort
We need to convert the speed into meters per second
Put the value of A and B into the speed




Hence, The speed is 173 m/s.
Ans: Beat Frequency = 1.97HzExplanation:
The fundamental frequency on a vibrating string is

<span> -- (A)</span>
<span>here, T=Tension in the string=56.7N,
L=Length of the string=0.66m,
m= mass = 8.3x10^-4kg/m * 0.66m = 5.48x10^-4kg </span>
Plug in the values in Equation (A)
<span>so </span>

<span> = 197.97Hz </span>
<span>the beat frequency is the difference between these two frequencies, therefore:
Beat frequency = 197.97 - 196.0 = 1.97Hz
-i</span>
Answer:
current through dry = 1.2 mA
current through wet = 85.7 mA
Explanation:
given data
resistance dry = 1 ×
Ω
resistance wet = 1400 Ω
voltage applied = 120 V
to find out
current
solution
we get here current through dry skin I dry =
..................1
current =
= 0.0012 A = 1.2 mA
and now we get
current through wet I wet =
=
= 0.085714 A = 85.7 mA