Charges build up when you have dry air and friction ,the heat to clothes which dry it out and causes friction.
Answer:
Explanation:
Since the front and back of the rocket simultaneously line up with forward and backward end of the platform respectively .
Then length of the platform = length of the train rocket .
A )
Time to cross a particular point on the platform
= length of rocket train / .96 x 3 x 10⁸
= 90 / .96 x 3 x 10⁸
= 31.25 x 10⁻⁸ s
B) Rest length of the rocket = length of platform = 90 m
C ) length of platform as viewed by moving observer =

= 
= 321 m
D ) For the observer on platform time taken = 31.25 x 10⁻⁸ s
for the observer in the rocket , time will be dilated so time recorded by observer in motion ,
8.75 x 10⁻⁸ s .
Weight of the carriage 
Normal force 
Frictional force 
Acceleration 
Explanation:
We have to look into the FBD of the carriage.
Horizontal forces and Vertical forces separately.
To calculate Weight we know that both the mass of the baby and the carriage will be added.
- So Weight(W)

To calculate normal force we have to look upon the vertical component of forces, as Normal force is acting vertically.We have weight which is a downward force along with
, force of
acting vertically downward.Both are downward and Normal is upward so Normal force 
- Normal force (N)

- Frictional force (f)

To calculate acceleration we will use Newtons second law.
That is Force is product of mass and acceleration.
We can see in the diagram that
and
component of forces.
So Fnet = Fy(Horizontal) - f(friction) 
- Acceleration (a) =

So we have the weight of the carriage, normal force,frictional force and acceleration.
<span>10.3 cm
The wavelength will be the distance that light travels in 1 second divided by the frequency of the radiation. Since the over operates at 2.60 ghz, the frequence is 2.6 billion times per second, or 2.60 x 10^9. The speed of light is defined as 299792458 m/s exactly. So
299792458 m/s / 2.60 x 10^9 1/s = 0.10337671 m = 10.337671 cm
Since we only have 3 significant digits, the answer rounds to 10.3 cm</span>
Answer:
So the acceleration of the child will be 
Explanation:
We have given angular speed of the child 
Radius r = 4.65 m
Angular acceleration 
We know that linear velocity is given by 
We know that radial acceleration is given by 
Tangential acceleration is given by

So total acceleration will be 