Answer:
1.) Magnitude = 5596 N
2.) Direction = 60 degrees
Explanation: You are given that the breakdown vehicle A is exerting a force of 4000 N at angle 45 degree to the vertical and breakdown vehicle B is exerting a force of 2000 N
Let us resolve the two forces into X and Y component
Sum of the forces in the X - component will be 4000 × cos 45 = 2828.43 N
Sum of the forces in the Y - component will be 2000 + ( 4000 × sin 45 )
= 2000 + 2828.43
= 4828.43 N
The resultant force R will be
R = sqrt ( X^2 + Y^2 )
Substitutes the forces at X component and Y component into the formula
R = sqrt ( 2828.43^2 + 4828.43^2 )
R = sqrt ( 31313752.53 )
R = 5595.87 N
The direction will be
Tan Ø = Y/X
Substitute Y and X into the formula
Tan Ø = 4828.43 / 2828.43
Tan Ø = 1.707106
Ø = tan^-1( 1.707106 )
Ø = 59.64 degree
Therefore, approximately, the magnitude and direction of the resultant force on the truck are 5596 N and 60 degree respectively.
Answer:
Explanation:
Change in gravitational energy of the ball = mgh
5 mutiply 10 multiply 1.7 = 85J
Potential energy at height = Kinetic energy at bottom
KE= 85J
Velocity
v=5.83m/s
Answer:
The moment (torque) is given by the following equation:
![\vec{\tau} = \vec{r} \times \vec{F}\\\vec{r} \times \vec{F} = \left[\begin{array}{ccc}\^{i}&\^j&\^k\\r_x&r_y&r_z\\F_x&F_y&F_z\end{array}\right] = \left[\begin{array}{ccc}\^{i}&\^j&\3k\\0.23&0.04&0\\150&260&0\end{array}\right] = \^k((0.23*260) - (0.04*150)) = \^k (53.8~Nm)](https://tex.z-dn.net/?f=%5Cvec%7B%5Ctau%7D%20%3D%20%5Cvec%7Br%7D%20%5Ctimes%20%5Cvec%7BF%7D%5C%5C%5Cvec%7Br%7D%20%5Ctimes%20%5Cvec%7BF%7D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5C%5E%7Bi%7D%26%5C%5Ej%26%5C%5Ek%5C%5Cr_x%26r_y%26r_z%5C%5CF_x%26F_y%26F_z%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5C%5E%7Bi%7D%26%5C%5Ej%26%5C3k%5C%5C0.23%260.04%260%5C%5C150%26260%260%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5C%5Ek%28%280.23%2A260%29%20-%20%280.04%2A150%29%29%20%3D%20%5C%5Ek%20%2853.8~Nm%29)
Explanation:
The cross-product between the distance and the force can be calculated using the method of determinant. Since the z-components are zero, it is easy to calculate.
Answer:
(A) v = 14.8m/s
Explanation:
(A) V = sqrt(k/m) × A = sqrt(22/0.1) × 0.29 =14.8m/s.
Answer:
Explanation:
Let T be the tension in the swing
At top point 
where v=velocity needed to complete circular path
r=distance between point of rotation to the ball center=L+\frac{d}{2} (d=diameter of ball)
Th-resold velocity is given by 
To get the velocity at bottom conserve energy at Top and bottom
At top 
Energy at Bottom 
Comparing two as energy is conserved



