Answer:
The charge to mass ratio is 
Explanation:

We need to find how much charge is contained in the electron per unit of mass, to do this we divide the charge in an electron and the mass of an electron:

I think the best answer is option one. The first thing to focus on when creating a workout plan is <span>determining the frequency of the activity. It is important took look at how much time do you have to do things in order to manage your tasks daily and you can give enough time for each activity.</span>
X^2+y^2+z^2=A^2
But here XY and Z are all equal so
3X^2=A^2
X=A/(sqrt(3))
Each component is the value of a divided by the square root of three. This way if you square then and add them up it equals a squared
Answer:
a. N = 2.49W b. 0.40
Explanation:
a. What is the magnitude of the normal force FNFN between a rider and the wall, expressed in terms of the rider's weight W?
Since the normal force equals the centripetal force on the rider, N = mrω² where r = radius of cylinder = 3.05 m and ω = angular speed of cylinder = 0.450 rotations/s = 0.450 × 2π rad/s = 2.83 rad/s
Now N = mrω² = m(3.05 m) × (2.83 rad/s)² = 24.43m
The rider's weight W = mg = 9.8m
The ratio of the normal force to the rider's weight is
N/W = 24.43m/9.8m = 2.49
So the normal force expressed in term's of the rider's weight is
N = 2.49W
b. What is the minimum coefficient of static friction µsμs required between the rider and the wall in order for the rider to be held in place without sliding down?
The frictional force, F on the rider by the wall of the cylinder equals the weight, W of the rider. F = W.
Since the frictional force F = μN, where μ = coefficient of static friction between rider and wall of cylinder and N = normal force between rider and wall of cylinder.
So, the normal force equals
N = F/μ = W/μ = mg/μ = mrω²
μ = mg/mrω²
= W/N
= 9.8m/24.43m
= 0.40