answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
luda_lava [24]
2 years ago
10

A bicycle rider has a speed of 19.0 m/s at a height of 55.0 m above sea level when he begins coasting down hill. The mass of the

rider and his bike is 88.0 kg. Sea level is the zero level for measuring gravitational potential energy. Ignoring friction and air resistance, what is the rider’s total mechanical energy when he coasts to a height of 25.0 m above sea level
Physics
1 answer:
lukranit [14]2 years ago
5 0

Answer:

The mechanical energy of the rider at any height will be 6.34 × 10⁴ J.

Explanation:

Hi there!

The mechanical energy of the rider is calculated as the sum of the gravitational potential energy plus the kinetic energy. Since there are no dissipative forces (like friction), the mechanical energy of the rider at a height of 55.0 m above the sea level will be the same at a height of 25.0 m (or at any height), because the loss in potential energy will be compensated by a gain in kinetic energy, according to the law of conservation of energy.

Then, calculating the potential and kinetic energy at 55.0 m and 19 m/s, we can obtain the mechanical energy that will be constant:

Mechanical energy = PE + KE

Where:

PE = potential energy.

KE = kinetic energy.

The potential energy is calculated as follows:

PE = m · g · h

Where:

m = mass of the object.

g = acceleration due to gravity.

h = height.

Then, the potential energy of the rider will be:

PE = 88.0 kg · 9.81 m/s² · 55.0 m = 4.75 × 10⁴ J

The kinetic energy is calculated as follows:

KE = 1/2 · m · v²

Where "m" is the mass of the object and "v" its velocity. Then:

KE = 1/2 · 88.0 kg · (19.0 m/s)²

KE = 1.59 × 10⁴ J

The mechanical energy of the rider will be:

Mechanical energy = PE + KE = 4.75 × 10⁴ J + 1.59 × 10⁴ J = 6.34 × 10⁴ J

This mechanical energy is constant because when the rider coast down the hill, its potential energy is being converted into kinetic energy, so that the sum of potential energy plus kinetic energy remains constant.

You might be interested in
A spring driven dart gun propels a 10g dart. It is cocked by exerting a force of 20N over a distance of 5cm. With what speed wil
adelina 88 [10]
<span>14 m/s Assuming that all of the energy stored in the spring is transferred to dart, we have 2 equations to take into consideration. 1. How much energy is stored in the spring? 2. How fast will the dart travel with that amount of energy. As for the energy stored, that's a simple matter of multiplication. So: 20 N * 0.05 m = 1 Nm = 1 J For the second part, the energy of a moving object is expressed as KE = 0.5 mv^2 where KE = Kinetic energy m = mass v = velocity Since we now know the energy (in Joules) and mass of the dart, we can substitute the known values and solve for v. So KE = 0.5 mv^2 1 J = 0.5 0.010 kg * v^2 1 kg*m^2/s^2 = 0.005 kg * v^2 200 m^2/s^2 = v^2 14.14213562 m/s = v So the dart will have a velocity of 14 m/s after rounding to 2 significant figures.</span>
6 0
2 years ago
Read 2 more answers
Evaporation of sweat requires energy and thus take excess heat away from the body. Some of the water that you drink may eventual
kotegsom [21]

Answer:

The amount of heat required is H_t =  1.37 *10^{6} \ J

Explanation:

From the question we are told that

The mass of water is m_w  =  20 \ ounce = 20 * 28.3495 = 5.7 *10^2 g

The temperature of the water before drinking is T_w  =  3.8 ^oC

The temperature of the body is T_b  =  36.6^oC

Generally the amount of heat required to move the water from its former temperature to the body temperature is

H=  m_w  *  c_w * \Delta T

Here c_w is the specific heat of water with value c_w = 4.18 J/g^oC

So

H=   5.7 *10^2 * 4.18 * (36.6 - 3.8)

=> H= 7.8 *10^{4} \  J

Generally the no of mole of sweat present mass of water is

n = \frac{m_w}{Z_s}

Here Z_w is the molar mass of sweat with value

Z_w =  18.015 g/mol

=> n = \frac{5.7 *10^2}{18.015}

=> n = 31.6 \  moles

Generally the heat required to vaporize the number of moles of the sweat is mathematically represented as

H_v  =  n  *  L_v

Here L_v is the latent heat of vaporization with value L_v  = 7 *10^{3} J/mol

=> H_v  =  31.6 * 7 *10^{3}

=> H_v  = 1.29 *10^{6} \  J

Generally the overall amount of heat energy required is

H_t =  H +  H_v

=> H_t =  7.8 *10^{4} +  1.29 *10^{6}

=> H_t =  1.37 *10^{6} \ J

4 0
2 years ago
Every winter I fly home to Chicago. It takes 3 hours. What is my average speed?
Tanya [424]

It depends on where you live when you're not visiting Chicago. We need to know the distance of the trip.

Your average speed on the trip is . . .

(total distance in miles) / (3 hours)

miles per hour

5 0
1 year ago
Two electrodes, separated by a distance d, in a vacuum are maintained at a constant potential difference. An electron, accelerat
Alja [10]

Answer:

Explanation:

Given that, the distance between the electrode is d.

The electron kinetic energy is Ek when the electrode are at distance "d" apart.

So, we want to find the K.E when that are at d/3 distance apart.

K.E = ½mv²

Note: the mass doesn't change, it is only the velocity that change.

Also,

K.E = Work done by the electron

K.E = F × d

K.E = W = ma × d

Let assume that if is constant acceleration

Then, m and a is constant,

Then,

K.E is directly proportional to d

So, as d increase K.E increase and as d decreases K.E decreases.

So,

K.E_1 / d_1 = K.E_2 / d_2

K.E_1 = E_k

d_1 = d

d_2 = d/3

K.E_2 = K.E_1 / d_1 × d_2

K.E_2 = E_k × ⅓d / d

Then,

K.E_2 = ⅓E_k

So, the new kinetic energy is one third of the E_k

7 0
2 years ago
In the Roman soldier model for refraction, what happens to the first soldier who hits the muddy stream?.....HELP PLZ.... A. They
SpyIntel [72]

Answer:

uKkskdjod 7q and the rays are the best in all the ways ❤ ♥

7 0
2 years ago
Other questions:
  • Click to review the online content. Then answer the question(s) below, using complete sentences. Scroll down to view additional
    14·1 answer
  • A proton is propelled at 4×106 m/s perpendicular to a uniform magnetic field. 1) If it experiences a magnetic force of 4.8×10−13
    14·1 answer
  • Suppose that a barometer was made using oil with rho=900 kg/m3. What is the height of the barometer at atmospheric pressure?
    10·1 answer
  • Bill throws a tennis ball to his dog. He throws the ball at a speed of 15 m/s at an angle of 30° to the horizontal. Assume he th
    10·1 answer
  • A ball hangs on the end of a string that is connected to the ceiling so that it swings like a pendulum. You pull the ball up so
    5·1 answer
  • Fiona and her twin sister April are enjoying the bumper cars at an amusement park. Fiona drives her car toward her sisters and t
    13·1 answer
  • A jet engine gets its thrust by taking in air, heating and compressing it, and
    11·1 answer
  • Assuming that you remain a finite distance from the origin, where in the X-Y plane could a point charge Q be placed, so that thi
    5·1 answer
  • A baseball bat hits a baseball with a force of 100 newtons. What is the force and its direction exerted by the ball on the bat?
    7·1 answer
  • In an inertial frame of reference, a series of experiments is conducted. In each experiment, two or three forces are applied to
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!