Answer:
Yes, ultraviolet light can turn a rubber into solid due to prolong exposure.
Explanation:
A rubber is a material with an elastic property, causing it to be deform by an external force but takes its shape when the force is removed. Light is an electromagnetic wave which causes the sensation of vision. It transfers energy to a medium during propagation through the medium.
Generally, most light do not cause hardness of a rubber. But an ultraviolet light can cause rubber to become solid over a period of time. This is possible if there is a prolong exposure of the rubber, and because of the evaporation of volatiles in the polymer material. Ultraviolet light are known to cause a rubber to become solid.
Answer: E= KQ/r^2
Explanation: An electric field is a region where an electric charge(positive or negative ) will experience a force.
The magnitude of an electric field E, at a point is given by Coulombs law as
E/ F/q
Where F= Coulombs force exertedon the charge and q= electric charge
E= F/q=(KQq)/r^2q
E=KQ/r^2
Answer:

Explanation:
The word 'nun' for thickness, I will interpret in international units, that is, mm.
We will begin by defining the intensity factor for the steel through the relationship between the safety factor and the fracture resistance of the panel.
The equation is,

We know that
is 33Mpa*m^{0.5} and our Safety factor is 2,

Now we will need to find the average width of both the crack and the panel, these values are found by multiplying the measured values given by 1/2
<em>For the crack;</em>

<em>For the panel</em>

To find now the goemetry factor we need to use this equation

That allow us to determine the allowable nominal stress,


\sigma_{allow} = 208.15Mpa
So to get the force we need only to apply the equation of Force, where



That is the maximum tensile load before a catastrophic failure.
Answer:
energy carried by the current is given by the pointyng vector
Explanation:
The current is defined by
i = dQ / dt
this is the number of charges per unit area over time.
The movement of the charge carriers (electrons) is governed by the applied potential difference, when the filament has a movement the drag speed of these moving electrons should change slightly.
But the energy carried by the current is given by the pointyng vector of the electromagnetic wave
S = 1 / μ₀ EX B
It moves at the speed of light and its speed depends on the properties of the doctor and is not disturbed by small changes in speed, therefore the current in the circuit does not change due to this movement