answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
cricket20 [7]
2 years ago
14

Your low-flow showerhead is delivering water at 1.2×10−4m3/s, about 2.0 gallons per minute.

Physics
1 answer:
Oksanka [162]2 years ago
7 0

To solve this problem it is necessary to apply the fluid mechanics equations related to continuity, for which the proportion of the input flow is equal to the output flow, in other words:

Q_1 = Q_2

We know that the flow rate is equivalent to the velocity of the fluid in its area, that is,

Q = VA

Where

V = Velocity

A = Cross-sectional Area

Our values are given as

Q_2 = 1.2*10^{-4}m^3/s

d = 0.021m

r = \frac{0.021}{2} = 0.0105m

Since there is continuity we have now that,

V_1A_1 = Q_2

V_1A_1 = 1.2*10^{-4}

V_1 = \frac{1.2*10^{-4}}{A_2}

V_1 = \frac{1.2*10^{-4}}{\pi r^2}

V_1 = \frac{1.2*10^{-4}}{\pi (0.0105)^2}

V_1 =0.347m/s

Therefore the speed of the water's house supply line is 0.347m/s

You might be interested in
At the instant that the velocity of the crate is v⃗ =(3.40m/s)ι^+(2.20m/s)j^, what is the instantaneous power supplied by this f
Zigmanuir [339]
I found some missing information about this problem online. We are given the force:
F = F =(-7.50N)i +(3.00N)j
Power is defined as the rate of doing work. 
This is the formula:
P= \frac{dW}{dt}
Where P is power, W is work. 
Work is defined as:
W=F\cdot r
F is the force and r is the displacement.
If we assume that force is not changing (it's constant) with time we get:
P= \frac{dW}{dt}=F \frac{dr}{dt}=F\cdot v
Keep in mind that both force and velocity are vectors, so we have to multiply each component separately.
Finally, we get:
P=F_i\cdot v_i+F_j\cdot v_j=(-7.50N)(3.40\frac{m}{s})+(3.00N)(2.20\frac{m}{s})=
-18.9 W


5 0
2 years ago
The rate of change of atmospheric pressure P with respect to altitude h is proportional to P, provided that the temperature is c
puteri [66]

Answer:

64.59kpa

Explanation:

See attachment

6 0
2 years ago
On a warm summer day (31 ∘c), it takes 4.60 s for an echo to return from a cliff across a lake. on a winter day, it takes 5.00 s
xenn [34]
The question is missing, but I guess the problem is asking for the distance between the cliff and the source of the sound.

First of all, we need to calculate the speed of sound at temperature of T=31^{\circ}C:
v=(331+0.60 T) m/s = (331+0.6 \cdot 31) m/s = 349.6 m/s

The sound wave travels from the original point to the cliff and then back again to the original point in a total time of t=4.60 s. If we call L the distance between the source of the sound wave and the cliff, we can write (since the wave moves by uniform motion):
v= \frac{2L}{t}
where v is the speed of the wave, 2L is the total distance covered by the wave and t is the time. Re-arranging the formula, we can calculate L, the distance between the source of the sound and the cliff:
L= \frac{vt}{2}= \frac{(349.6 m/s)/4.60 s)}{2}=  804.1 m
6 0
2 years ago
Assuming both graduated cylinders are holding water at room temperature, which cylinder has more thermal energy?
natta225 [31]

Answer:

The correct option is;

The graduate cylinder with more water has more thermal energy because it is holding more water molecules

Explanation:

Given that the thermal energy of the system is the energy possessed by the system by virtue of the increased motion of the particles by virtue of a transfer  of heat, when the content of the system is heated

The thermal energy, Q is given by the following equation;

Q = Mass, m × The specific heat capacity, C × The change in temperature, ΔT

Given that the graduated cylinder with more water has more mass and therefore, more water molecules, than the cylinder with less water, the cylinder with more water has more thermal energy.

3 0
2 years ago
what is the acceleration of a bowling ball that starts at rest and moves 300m down the gutter in 22.4 sec
exis [7]
<span>Acceleration is the change in velocity divided by time taken. It has both magnitude and direction. In this problem, the change in velocity would first have to be calculated. Velocity is distance divided by time. Therefore, the velocity here would be 300 m divided by 22.4 seconds. This gives a velocity of 13.3928 m/s. Since acceleration is velocity divided by time, it would be 13.3928 divided by 22.4, giving a final solution of 0.598 m/s^2.</span>
7 0
2 years ago
Other questions:
  • 1. I drop a penny from the top of the tower at the front of Fort Collins High School and it takes 1.85 seconds to hit the ground
    8·1 answer
  • Consider a box sitting in the back of a pickup. The pickup accelerates to the right, and because the bed of the pickup is sticky
    8·2 answers
  • Police officer at rest at the side of the highway
    12·1 answer
  • If the current in a wire increases from 5 A to 10 A, what happens to its magnetic field? If the distance of a charged particle f
    14·2 answers
  • During a 72-ms interval, a change in the current in a primary coil occurs. This change leads to the appearance of a 6.0-mA curre
    5·1 answer
  • A book is moved once around the edge of a tabletop with dimensions 1.75 m à 2.25 m. If the book ends up at its initial position,
    10·1 answer
  • A carousel that is 5.00 m in radius has a pair of 600-Hz sirens mounted on posts at opposite ends of a diameter. The carousel ro
    8·1 answer
  • A certain unfiltered full-wave rectifier with 120 V, 60 Hz input produces an output with a peak of 15 V. When a capacitor-input
    10·1 answer
  • A battery with internal resistance r is connected to a load resistance R. If R is increased, does the terminal voltage of the ba
    14·1 answer
  • 1. A2 .7-kg copper block is given an initial speed of 4.0m/s on a rough horizontal surface. Because of friction, the block final
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!