Answer:
b) It is impossible to tell without knowing the masses.
Explanation:
The temperature change of a substance when it receives/gives off a certain amount of heat Q is given by

where
Q is the amount of heat
m is the mass of the substance
Cs is the specific heat capacity of the substance
In this case, we have a hot piece of aluminum in contact with a cold piece of copper: the amount of heat given off by the aluminum is equal to the amount of heat absorbed by the copper, so Q is the same for the two substances. However, we see that the temperature change of the two substances depends on two other factors: the mass, m, and the specific heat, Cs. So, since we know only the specific heat of the two substances, but not their mass, we can't tell which object will experience the greater temperature change.
(a) The y-component or vertical velocity is calculated using:
Vy = Vsin(∅)
(b) The x-component or horizontal velocity is calculated using:
Vx = Vcos(∅)
Answer:
Total number of electrons

electrons removed from each sphere

Fraction of electrons transferred is given as

Explanation:
As we know that moles is defined as



so number of atoms of Al in each sphere is given as


Now number of electrons in each atom is given as
atomic number = number of electrons in each atom = 13
total number of electrons in each sphere is


Also we know that force of attraction between them is given as



now we have




Fraction of electrons transferred is given as


Answer:
90.77%
its capacity utilization rate for the month is 90.77%
Explanation:
The capacity utilisation rate can be expressed mathematically as;
Capacity utilisation rate = capacity used/Best operating level × 100%
Given;
Total Number of production time = 205hours
Production output/capacity used = 21400 units
Best operation rate = 115units/hour
Best operation output for the month of July( at best operation level )
=115units/hour × 205 hours = 23575 units
Capacity utilisation rate = 21400/23575 × 100%
= 90.77%
Since we are given the density and volume, then perhaps we can determine the amount in terms of the mass. All we have to do is find the volume in terms of cm³ so that it will cancel out with the cm³ in the density. The conversion is 1 ft = 30.48 cm. The solution is as follows:
V = (14 ft)(15 ft)(8 ft)(30.48 cm/1 ft)³ = 0.0593 cm³
The mass is equal to:
Mass = (0.00118g/cm³)(0.0593 cm³)
Mass = 7 grams of HCN