Complete Question
The complete question is shown on the first uploaded image
Answer:
The correct answer is option c
Explanation:
Faraday states that when there is a change in magnetic field of a coil of a wire, it means that there exist an emf in the circuit which in induced due to the change in the magnetic flux
From the question two separate but nearby coils are mounted along the axis. First coil is connected to the power supply and the current flow is controlled by the supply.When the current alternates, it would produce magnetic field ,also the second coil is connected to an ammeter which indicates the current that is flowing in it when current in the first coil changes
This magnetic field that is produce would cause a change flux which would induce current in the second coil so the ammeter would indicate current flow in the second coil
a is incorrect because the current in fir coil is not change hence flux won't change therefore current is is not induced in second coil
This is the same reason b is incorrect
d is incorrect due to the fact that when the second coil is connected to a power supply by rewiring it to be in series with first coil the law of electromagnetism would no longer hold so he ammeter would show no reading
To solve this problem we will apply the concepts related to the Impulse which can be defined as the product between mass and the total change in velocity. That is to say

Here,
m = mass
Change in velocity
As we can see there are two types of velocity at the moment the object makes the impact,
the first would be the initial velocity perpendicular to the wall and the final velocity perpendicular to the wall.
That is to say,


El angulo dado es de 45° y la velocidad de 25, por tanto


The change of sign indicates a change in the direction of the object.
Therefore the impulse would be as


The negative sign indicates that the pulse is in the opposite direction of the initial velocity.
Answer:
R = 0.992 Ω
Explanation:
En esta pregunta, dada la información que contiene, debemos calcular la resistencia de la varilla de grafito.
Matemáticamente,
Resistencia = (resistividad * longitud) / Área De la pregunta;
Resistividad = 3,5 * 10 ^ -5 Ωm
longitud = 170 cm = 1,7 m
Área = 60 mm ^ 2 = 60/1000000 = 6 * 10 ^ -5 m ^ 2
Conectando estos valores a la ecuación anterior, tenemos;
Resistencia = (3.5 * 10 ^ -5 * 1.7) / (6 * 10 ^ -5) =
(3.5 * 1.7) / 6 = 0.992 Ω