<span>A 50-gram sample with a half-life of 12 days will have a remaining mass of 25 grams after its 12-day half-life.
Every cycle of a half-life, the sample will lose half of its mass, so if the half-life, itself, is 12 days and the time period passing is 12 days, one half-life has passed and the material will be halved.</span>
Answer:
1.98 M
Explanation:
Given data
- Initial volume (V₁): 93.2 mL
- Initial concentration (C₁): 2.03 M
- Volume of water added: 3.92 L
Step 1: Convert V₁ to liters
We will use the relationship 1 L = 1000 mL.

Step 2: Calculate the final volume (V₂)
The final volume is the sum of the initial volume and the volume of water.

Step 3: Calculate the final concentration (C₂)
We will use the dilution rule.

Answer:
50 g of S are needed
Explanation:
To star this, we begin from the reaction:
S(s) + O₂ (g) → SO₂ (g)
If we burn 1 mol of sulfur with 1 mol of oxygen, we can produce 1 mol of sulfur dioxide. In conclussion, ratio is 1:1.
According to stoichiometry, we can determine the moles of sulfur dioxide produced.
100 g. 1mol / 64.06g = 1.56 moles
This 1.56 moles were orginated by the same amount of S, according to stoichiometry.
Let's convert the moles to mass
1.56 mol . 32.06g / mol = 50 g
In alkene if two substituent and hydrogen are attached in the isomer may be cis or trans. When two or more substitution are attached to an alkene the isomer may be Z or E.All cis are Z isomer. The structure of (Z)-3-methy-3-heptene is as the following attachment
Answer:
The bond dissociation energy to break 4 bonds in 1 mol of CH is 1644 kJ
Explanation:
Since there are 4 C-H bonds in CH₄, the bond dissociation energy of 1 mol of CH₄ is 4 × bond dissociation energy of one C-H bond.
From the table one mole is C-H bond requires 411 kJ, that is 411 kJ/mol. Therefore, 4 C-H bonds would require 4 × 411 kJ = 1644 kJ
So, the bond dissociation energy to break 4 bonds in 1 mol of CH₄ is 1644 kJ