Answer: C. The case on the inclined surface had the least decrease intotal mechanical energy.
Explanation:
First and foremost, it should be noted that the mechanical energy is the addition of the potential and the kinetic energy.
From the information given, it should be known that when the block is projected with the same speed v up an incline where is slides to a stop due to friction, the box will lose its kinetic energy but there'll be na increase in the potential energy as a result of the veritcal height. This then brings about an increase in the mechanical energy.
Therefore, the total mechanical energy of the block will decrease the least when the case on the inclined surface had the least decrease intotal mechanical energy.
Explanation:
Mass of the Earth is equal to,

Any number can be written in the form of scientific notation as :

m is the real number
n is any integer
Mass of the earth can be written in the form of scientific notation as :

Here,
m = 5.97
n = 24
Hence, this is the required solution.
Answer:
d) 12 V
Explanation:
Due to the symmetry of the problem, the potential (relative to infinity) at the midpoint of the square, is the same for all charges, provided they be of the same magnitude and sign, and be located at one of the corners of the square.
We can apply the superposition principle (as the potential is linear with the charge) and calculating the total potential due to the 4 charges, just adding the potential due to any of them:
V = V(Q₁) + V(Q₂) +V(Q₃) + V(Q₄) = 4* 3.0 V = 12. 0 V
<span>1.5 minutes per rotation.
The formula for centripetal force is
A = v^2/r
where
A = acceleration
v = velocity
r = radius
So let's substitute the known values and solve for v. So
F = v^2/r
0.98 m/s^2 = v^2/200 m
196 m^2/s^2 = v^2
14 m/s = v
So we need a velocity of 14 m/s. Let's calculate how fast the station needs to spin.
Its circumference is 2*pi*r, so
C = 2 * 3.14159 * 200 m
C = 1256.636 m
And we need a velocity of 14 m/s, so
1256.636 m / 14 m/s = 89.75971429 s
Rounding to 2 significant digits gives us a rotational period of 90 seconds, or 1.5 minutes.</span>
The answer:
the relationship between elementary charge, potential difference and electrical potential energy is given by
E= qV
E: lectrical potential energy
q: elementary charge
V: potential difference
but we have e=abs val(q)=3
so we have E= qV=3ex4.5V=<span>13.5 eV
</span>
the answer is <span>(4)13.5 eV</span>