answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Citrus2011 [14]
1 year ago
10

A flat surface is in a uniform magnetic field. Given only the area of the surface and the magnetic flux through the surface, it

is possible to calculate ____________________
Physics
1 answer:
Tasya [4]1 year ago
3 0

Answer:

Given the area A of a flat surface and the magnetic flux through the surface \Phi it is possible to calculate the magnitude \frac{\Phi}{A}=B\ cos \theta.

Explanation:

The magnetic flux gives an idea of how many magnetic field lines are passing through a surface. The SI unit of the magnetic flux \Phi is the weber (Wb), of the magnetic field B is the tesla (T) and of the area A is (m^{2}). So 1 Wb=1 T.m².

For a flat surface S of area A in a uniform magnetic field B, with \theta being the angle between the vector normal to the surface S and the direction of the magnetic field B, we define the magnetic flux through the surface as:

                                                     \Phi=B\ A\ cos\theta

We are told the values of \Phi and B, then we can calculate the magnitude

                                                      \frac{\Phi}{A}=B\ cos\theta

You might be interested in
Two oppositely charged but otherwise identical conducting plates of area 2.50 square centimeters are separated by a dielectric 1
7nadin3 [17]

Answer:

A). σ = 3.823 x 10^{-5} C^{2}/N-m^{2}

B). \sigma ^{'}=2.76\times 10^{-5} C/m^{2}

C). U=10.322 J

Explanation:

A). We know magnitude of charge per unit area for a conducting plate is given by

\sigma =k.\varepsilon _{0}.E

where, E is resultant electric field = 1.2 x 10^{6} V/m

           \varepsilon _{0} is permittivity of free space = 8.85 x 10^{-12} C^{2}/N-m^{2}

           k is dielectric constant = 3.6

∴\sigma =k.\varepsilon _{0}.E

                     = 3.6 x 8.85 x10^{-12} x 1.2 x 10^{6}

                    = 3.823 x 10^{-5} C^{2}/N-m^{2}

B).Now we know that the magnitude of charge per unit area on the surface of the dielectric plate is given by

\sigma ^{'}=\sigma\left ( 1-\frac{1}{k} \right )

\sigma ^{'}=3.823\times 10^{-5}\left ( 1-\frac{1}{3.6} \right )

\sigma ^{'}=2.76\times 10^{-5} C/m^{2}

C).

Area of the plate, A = 2.5 cm^{2}

                                 = 2.5 x 10^{-4}m^{2}

diameter of the plate, d = 1.8 mm

                                        = 1800 m

∴ Total energy stored in the capacitor

U=\frac{1}{2}k\varepsilon _{0}E^{2}Ad

U=\frac{1}{2}\times 3.6\times8.85 \times10^{-12}\times\left ( 1.2\times 10^{6} \right ) ^{2}\times 2.5\times 10^{-4}\times 1800

U=10.322 J

4 0
2 years ago
The total charge that an automobile battery can supply without being recharged is given in terms of ampere-hours. A typical 12 V
Lelechka [254]

Answer:

7.894 Hours.

Explanation:

Based on information number hours that this battery will last with give load  has mathematical relation of.

t = \frac{60Ah}{load in amperes.}

with load 60A t =  1h, 30A t = 2h so on and forth.

two head lights draw total current of 2x3.8A = 7.6A.

putting this in above relation gives.

t = \frac{60Ah}{7.6A}=7.894 h.

That is how long will it be before battery is dead.

6 0
1 year ago
To make the jump, Neo and Morpheus have pushed against their respective launch points with their legs applying a _____ to the la
ra1l [238]
Force, newtons 3rd law of motion stated for every action there is an equal and opposite reaction
7 0
1 year ago
The model of the atom has changed as scientists have gathered new evidence. Four models of the atom are shown below, but one imp
nexus9112 [7]

Answer: Dalton’s model

Explanation:

In the attached image we can see four atomic models labeled with four letters:

W represents the current and accepeted atomic model: a nucleus with an electron cloud, where the orbit and position of the electrons around the nucleus is defined by specific regions (associated with specific energy levels) where there is a greater probability of finding the electron at any given moment. It is important to note this model was improved by the works in quantum physics done by Louis de Broglie and Erwin Schrodinger.

X represents Rutherford's model (This model was proposed after Thomson's model). Ernest Rutherford conducted a series of experiments in order to corroborate Thomson's atomic model. However the results of the experiment led him to find out there is a concentration of charge in the atom's core (which was later called nucleus) surrounded by electrons.  This lead to a new atomic model, in which the atom has a positive charged nucleus surrounded by negative charged particles that move similar to the orbit of the planet around the Sun.

Y represents Thomson's model, also called  the <em>plum pudding</em> model. This scientific found out that atoms contain small subatomic particles with a negative charge (later called electrons). However, taking into consideration that at that time there was still no evidence of the atom nucleus, Thomson thought the electrons were immersed in the atom of positive charge that counteracted the negative charge of the electrons. Just like the raisins embedded in a pudding or bread.

Z represents Bohr's model. This model was proposed by the danish physicist Niels Bohr after Rutherford's model. In fact, this model was Rutherford's model with the following addition: electrons orbit the nucleus (like planets around the sun) in specific orbits at different energy levels around the nucleus.

So, the only missing model is <u>Dalton's model</u>, which was the first atomic model:  the atom represented as a solid, indestructible and indivisible mass. An idea that was already accepted by that time since the ancient Greeks.

4 0
2 years ago
Read 2 more answers
Which of the following statements cannot be supported by Kepler's laws of planetary motion?
gladu [14]

Answer:

The rotational speed of the four smallest planets can be determined using the rotational speeds of the four largest planets and their orbital periods.

Explanation:

Kepler's three laws are:

1) The orbits of the planets around the Sun are ellipses, with the Sun at one of the focii

2) A line connecting the Sun with each planet sweeps out equal areas in equal time intervals

3) The cube of the semi-major axis of the orbit of one planet is proportional to the square of its orbital period

There 3 laws help explaining the following statements:

- <em>A planet's distance from the sun will not be the same in six months. --> </em>using the 1st law. In fact, since the orbit is an ellipse (and not a circle), and the Sun is at one of the focii, the distance of the planet from the Sun keeps changing during the year.

-<em> A planet's speed as it moves around the sun will not be the same in six months. -</em>-> using the 2nd law. In fact, since the line connecting the Sun to the planet must cover equal areas in the same time interval, it follows that the speed of the planet cannot be constant during the year (it will be faster when closer to the sun and slower when far from the sun).

- <em>The average distance of Saturn can be calculated using the average distance of Neptune and the orbital period of both planets. </em>--> using the 3rd law. In fact, the ratio \frac{a^3}{T^2} (where a is the semi-major axis of the orbit and T the orbital period) is constant and it is the same for every planet orbiting the sun, so by knowing the data of Neptune and the orbital period of Saturn, it is possible to calculate Saturn's average distance.

Instead, the following statement:

<em>The rotational speed of the four smallest planets can be determined using the rotational speeds of the four largest planets and their orbital periods.</em>

Is not supported by any Kepler's law.

8 0
1 year ago
Other questions:
  • Find the time t1 it takes to accelerate the flywheel to ω1 if the angular acceleration is α. express your answer in terms of ω1
    14·2 answers
  • What is the total flux φ that now passes through the cylindrical surface? enter a positive number if the net flux leaves the cyl
    15·1 answer
  • a projectile is launched straight up at 141 m/s . How fast is it moving at the top of its trajectory? suppose it is launched upw
    10·1 answer
  • A cat accelerates from rest to 10m/s when it sees a dog. This takes 2 seconds. What was the acceleration of the cat
    11·2 answers
  • A floating ice block is pushed through a displacement d = (14 m) i hat - (11 m) j along a straight embankment by rushing water,
    15·1 answer
  • A rear window defroster consists of a long, flat wire bonded to the inside surface of the window. When current passes through th
    5·2 answers
  • Suppose a bird takes off from a tree and flies in a straight line. It reaches a speed of 1o miles per second. What is the change
    15·1 answer
  • Consider the following spectrum where two colorful lines (A and B) are positioned on a dark background. The violet end of the sp
    8·1 answer
  • 1-A boy rolls a toy car across a floor with a velocity of 3.21 m/s. How long does it take the car to travel a distance of 4.50 m
    11·1 answer
  • A wind turbine with a rotor diameter of 40 m produces 90 kW of electrical power when the wind speed is 8 m/s. The density of air
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!