Answer:
remains the same, but the apparent brightness is decreased by a factor of four.
Explanation:
A star is a giant astronomical or celestial object that is comprised of a luminous sphere of plasma, binded together by its own gravitational force.
It is typically made up of two (2) main hot gas, Hydrogen (H) and Helium (He).
The luminosity of a star refers to the total amount of light radiated by the star per second and it is measured in watts (w).
The apparent brightness of a star is a measure of the rate at which radiated energy from a star reaches an observer on Earth per square meter per second.
The apparent brightness of a star is measured in watts per square meter.
If the distance between us (humans) and a star is doubled, with everything else remaining the same, the luminosity remains the same, but the apparent brightness is decreased by a factor of four (4).
Some of the examples of stars are;
- Canopus.
- Sun (closest to the Earth)
- Betelgeuse.
- Antares.
- Vega.
The two forces should be equal therefore:
2.10 * Fa = Fa + 2 * F * cos 18
simplifying the right side:
2.10 * Fa = Fa + 1.902 * F
1.10 Fa = 1.902 F
<span>F / Fa = 0.578</span>
Answer:
The ratio is
Explanation:
From the question we are told that
The radius of Phobos orbit is R_2 = 9380 km
The radius of Deimos orbit is 
Generally from Kepler's third law

Here M is the mass of Mars which is constant
G is the gravitational constant
So we see that 
=> ![[\frac{T_1}{T_2} ]^2 = [\frac{R_1}{R_2} ]^3](https://tex.z-dn.net/?f=%5B%5Cfrac%7BT_1%7D%7BT_2%7D%20%5D%5E2%20%3D%20%20%5B%5Cfrac%7BR_1%7D%7BR_2%7D%20%5D%5E3)
Here
is the period of Deimos
and
is the period of Phobos
So
![[\frac{T_1}{T_2} ] = [\frac{R_1}{R_2} ]^{\frac{3}{2}}](https://tex.z-dn.net/?f=%5B%5Cfrac%7BT_1%7D%7BT_2%7D%20%5D%20%3D%20%20%5B%5Cfrac%7BR_1%7D%7BR_2%7D%20%5D%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D)
=> ![\frac{T_1}{T_2} = [\frac{23500 }{9380} ]^{\frac{3}{2}}]](https://tex.z-dn.net/?f=%5Cfrac%7BT_1%7D%7BT_2%7D%20%20%3D%20%20%5B%5Cfrac%7B23500%20%7D%7B9380%7D%20%5D%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%5D)
=>
1). both
2). Venus
3). Venus catastrophically; Earth too but much less.
4). Earth
5). Earth
6). Venus (It would be pretty hard for US to mistake Earth for a star.)
Answer:
Answer
The Final Quality of teh R-134a in the container is 0.5056
The Total Heat transfer is 
Explanation:
Explanation is in the following attachments