For this problem, we use the conservation of momentum as a solution. Since momentum is mass times velocity, then,
m₁v₁ + m₂v₂ = m₁v₁' + m₂v₂'
where
v₁ and v₂ are initial velocities of cart A and B, respectively
v₁' and v₂' are final velocities of cart A and B, respectively
m₁ and m₂ are masses of cart A and B, respectively
(7 kg)(0 m/s) + (3 kg)(0 m/s) = (7 kg)(v₁') + (3 kg)(6 m/s)
Solving for v₁',
v₁' = -2.57 m/s
<em>Therefore, the speed of cart A is at 2.57 m/s at the direction opposite of cart B.</em>
<span>The Adirondack Mountains, Taconic Mountains, and the Hudson Highlands have the most resistant bedrock.</span>
Answer:
The maximum amount of mechanical energy converted to internal energy during the fall is 26.7 joules
Explanation:
Potential Energy (PE) = weight of baseball × height = 1.47N × 10m = 14.7Nm = 14.7 joules
Kinetic Energy (KE) = 12 joules
Maximum amount of mechanical energy converted to internal energy during the fall = PE + KE = 14.7 joules + 12 joules = 26.7 joules
Answer: 35*10^3 N/m
Explanation: In order to explain this problem we know that the potential energy for spring is given by:
Up=1/2*k*x^2 where k is the spring constant and x is the streching or compresion position from the equilibrium point for the spring.
We also know that with additional streching of 2 cm of teh spring, the potential energy is 18J. Then it applied another additional streching of 2 cm and the energy is 25J.
Then the difference of energy for both cases is 7 J so:
ΔUp= 1/2*k* (0.02)^2 then
k=2*7/(0.02)^2=35000 N/m
Answer:
See the explanation below
Explanation:
To better understand this problem, a cylinder sketch is attached before and after the cut, we see that after the cut, the shape of this resembles that of a right triangle.
We can find, the centroid in the xy plane, knowing that the centroid for a triangle is located a third of its base.
In the z axis there is no displacement of the centroid.