Answer:
Explanation:
The acceleration of an object down a slope (neglecting friction, µ = 0) is:
a = g × sin θ
Where,
g is the acceleration due to gravity and θ is the angle of the slope.
a = (9.8 × sin (21.5º)
= 3.592 m/s²
Using equations of motion,
S = ut + 1/2at²
Since, u = 0,
S = 1/2at²
347 = 1/2 × (3.592)t²
t² = 193.21
= sqrt(193.21)
= 13.9 s.
Answer:
Explanation:
When a ray of light travels into rarer medium from the denser medium and the angle of refraction is 90° so the angle of incidence in the denser medium is called critical angle for that pair of media.
Here, the angle of refraction is 90°, so the angle of incidence C is called the angle of incidence which is equal to the critical angle.
Answer:
Initial Velocity is 4 m/s
Explanation:
What is acceleration?
It is the change in velocity with respect to time, or the rate of change of velocity.
We can write this as:

Where
a is the acceleration
v is velocity
t is time
is "change in"
For this problem , we are given
a = 1.2
t = 10
Putting into formula, we get:

So, the change in velocity is 12 m/s
The change in velocity can also be written as:

It is given Final Velocity = 16, so we put it into formula and find Initial Velocity. Shown Below:

hence,
Initial Velocity is 4 m/s
Weight expressed in Newtons is expressed in the equation whereby Weight= the mass of an object * the force of gravity. The force of gravity on earth is a constant 9.8 meters per second squared. Therefore if weight (w) = 63 N and the force of gravity is 63 N then the mass must equal 6.43 kg. Because the equation for weight is w=mg so 63 N (w) = m * 9.8 m/s^2.