Particles in a liquid are more loosely packed there for they have more room to move and can flow around eachother . Hope this helps XD
<u>Answer:</u> The chemical equation is written below.
<u>Explanation:</u>
Combustion reaction is defined as the chemical reaction in which a hydrocarbon reacts with oxygen gas to produce carbon dioxide gas and water molecule.

The chemical equation for the combustion of ethyl chloride follows:

We are given:
When 4 moles of ethyl chloride is burnt, 5145 kJ of heat is released.
For an endothermic reaction, heat is getting absorbed during a chemical reaction and is written on the reactant side.

For an exothermic reaction, heat is getting released during a chemical reaction and is written on the product side

So, the chemical equation follows:

Hence, the chemical equation is written above.
FeSO₄*7H₂O(s) = FeSO₄(s) + 7H₂O(g)
M(FeSO₄*7H₂O)=278.0 g/mol
M(FeSO₄)=151.9 g/mol
m(FeSO₄*7H₂O)/M(FeSO₄*7H₂O)=m(FeSO₄)/M(FeSO₄)
m(FeSO₄)=M(FeSO₄)m(FeSO₄*7H₂O)/M(FeSO₄*7H₂O)
m(FeSO₄)=151.9*100.0/278.0=54.6 g
m(FeSO₄)=54.6 g
Answer:- 1840 g.
Solution:- We have been given with 3.35 moles of
and asked to calculate it's mass.
To convert the moles to grams we multiply the moles by the molar mass of the compound. Molar mass of the compound is the sum of atomic masses of all the atoms present in it.
molar mass of
= atomic mass of Hg + 2(atomic mass of I) + 6(atomic mass of O)
= 200.59+2(126.90)+6(16.00)
= 200.59+253.80+96.00
= 550.39 gram per mol
Let's multiply the given moles by the molar mass:

= 1843.8 g
Since, there are three sig figs in the given moles of compound, we need to round the calculated my to three sig figs also. So, on rounding off to three sig figs the mass becomes 1840 g.