<span>Empirical formula for C2H4(OH)2 is</span><span>
C1H3O1
</span>
When it goes bioom bing bong bang pew pew pew yeauae right?
Answer:
-1815.4 kJ/mol
Explanation:
Starting with standard enthalpies of formation you can calculate the standard enthalpy for the reaction doing this simple calculation:
∑ n *ΔH formation (products) - ∑ n *ΔH formation (reagents)
This is possible because enthalpy is state function meaning it only deppends on the initial and final state of the system (That's why is also possible to "mix" reactions with Hess Law to determine the enthalpy of a new reaction). Also the enthalpy of formation is the heat required to form the compound from pure elements, then products are just atoms of reagents organized in a different form.
In this case:
ΔH rxn = [(2 * -1675.7) - (3 * -520.0)] kJ/mol = -1815.4 kJ/mol
Answer:
748 torr
Explanation:
mmHg and torr are equivalent so, you'll have 748 torr.