answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
anzhelika [568]
2 years ago
7

A flatbed truck is carrying an 800-kg load of timber that is not tied down. The maximum friction force between the truck bed and

the load is 2400 N. What is the greatest acceleration that the truck can have without losing its load
Physics
1 answer:
ycow [4]2 years ago
4 0

Answer:

Acceleration a ≤ 3 m/s^2

the greatest acceleration that the truck can have without losing its load is 3 m/s^2

Explanation:

For the truck to accelerate without losing its load.

Acceleration force of truck must be less than or equal to the maximum friction force between the truck bed and the load.

Fa ≤ F(friction)

But;

Fa = mass × acceleration

Fa = ma

ma ≤ F(friction)

a ≤ (F(friction))/m ......1

Given;

Fa = mass × acceleration

Fa = ma

mass m = 800 kg

F(friction) = 2400 N

Substituting the given values into equation 1;

a ≤ F(friction)/m

a ≤ 2400N/800kg

a ≤ 3 m/s^2

the greatest acceleration that the truck can have without losing its load is 3 m/s^2

You might be interested in
1. Describe the methods by which an electric potential develops in primary cells and dry cells.
Andreyy89

Answer:

In primary cells, an electric potential develops through chemical action between the plates within the cell. Positively charged ions of zinc enter the acid and free electrons released from zinc atoms collect on the zinc plate, which results in a negative charge. At the same time, positively charged ions of hydrogen from the acid remove free electrons from the copper plate, which becomes positively charged. Through a conducting material connecting the plates, free electrons move from the zinc plate to the copper plate as long as the chemical reaction lasts.

Dry cells also develop electric potential via chemical actions within the cell. Free electrons removed from the carbon rod collect on a zinc can. The rod exhibits a positive charge and the can becomes negatively charged; this allows for an electric potential to develop between these two items. Through a conducting material connecting the can to the rod, free electrons move from the can to the rod as long as the conducting path exists.

Electric generators develop an electric potential via magnetic induction. Moving a conducting rod through a magnetic field that exists between the poles of a horseshoe magnet causes an electric potential to be set up in the rod. Free electrons move through this rod from one end to the other for as long as movement of the rod is maintained. The direction of this movement depends on whether the rod is moved across the lines of force in the magnetic field in either the opposite direction or the same direction. Generators usually consist of multiple conductors mounted on a cylinder that rotates in a magnetic field.

Thermocouples utilize heat to develop an electric potential. Two strips of different metals are connected at one end to form a junction and the other ends are kept apart. A heat source is applied to the junction; this causes each metal strip’s temperature to rise at the junction. The free ends aren’t as hot and electric charges are produced at these free ends. Because the strips consist of different materials, there's a difference of potential between these free ends; when connected by a conducting wire, the electrons can move through the pathway. The voltage that's produced will become greater as the difference in temperature between the free ends and the junction increases.

a. Increase

b. Decrease

c. Decrease

Since 1 Btu = 0.293 Wh, dividing the given amount of Wh by 0.293 will convert this amount into Btu. Therefore, 0.8 ÷ 0.293 = 2.73 Btu

365 days × 10 hours × 40 W = 146,000 Wh or 146 kWh

Explanation:

Penn Foster

6 0
2 years ago
A physics department has a Foucault pendulum, a long-period pendulum suspended from the ceiling. The pendulum has an electric ci
antoniya [11.8K]

Answer:

t=37 mins -> 2220sec

We want "T" which is the pendulum time constant

Using this equation

.5A=Ae^(-t/T)

The .5A is half the amplitude

Take ln of both sides to get ride of Ae

=ln(.5)=-2220/T

Now rearrange to = T

T=-2220/ln(.5) = 3202.78sec / 60 secs = 53.38 mins -> first part of the answer.

The second part is really easy. It took 37 mins to decay half way. meaning to decay another half of 50% which equals 25% it will take an additional 37 mins!

8 0
2 years ago
A 120-V rms voltage at 1000 Hz is applied to an inductor, a 2.00-μF capacitor and a 100-Ω resistor, all in series. If the rms va
natima [27]

Answer:

The inductance of the inductor is 35.8 mH

Explanation:

Given that,

Voltage = 120-V

Frequency = 1000 Hz

Capacitor C= 2.00\mu F

Current = 0.680 A

We need to calculate the inductance of the inductor

Using formula of current

I = \dfrac{V}{Z}

Z=\sqrt{R^2+(L\omega-\dfrac{1}{C\omega})^2}

Put the value of Z into the formula

I=\dfrac{V}{\sqrt{R^2+(L\omega-\dfrac{1}{C\omega})^2}}

Put the value into the formula

0.680=\dfrac{120}{\sqrt{(100)^2+(L\times2\pi\times1000-\dfrac{1}{2\times10^{-6}\times2\pi\times1000})^2}}

L=35.8\ mH

Hence, The inductance of the inductor is 35.8 mH

4 0
2 years ago
Read 2 more answers
Enrico says that positive charge is created when you rub a glass rod with silk, and that negative charge is simply the absence o
lisabon 2012 [21]

Answer:5 Neither: both negative and positive charge are present simultaneously in all solid materials on Earth

Explanation:

When we rub a glass rod with silk cloth then some of the electrons from glass rods are stripped away to the silk cloth. These electrons are loosely bound to the silk rod that is why they easily transferred to silk cloth.  

There is no net charge because the charge is induced when we rub the cloth and charge are separated therefore we able to notice these charges.

7 0
2 years ago
A solid spherical insulator has radius r = 2.5 cm, and carries a total positive charge q = 8 × 10-10 c distributed uniformly thr
ira [324]
At r = 2R> R The expression for the electric field will be given by: (2R)^2*E=kQ. Where, k=(9*10^9)N.m/C^2, Q=(8*10^-10)C and R=0.025m.  So substituting and clearing, we have that the magnitude of the electric field will be:  E=(9*10^9)*(8*10^-10)/((2*0.025)^2)=2880 N / C.
5 0
2 years ago
Other questions:
  • Describe how the sound from the radio reaches all parts of the room?? (2m)
    12·1 answer
  • A substance has a specific heat of 0.870 J/g°C. It requires 2,000.0 joules to increase the temperature of 10.0 grams of the subs
    7·2 answers
  • A person weighing 0.70 kn rides in an elevator that has an upward acceleration of 1.5 m/s2. what is the magnitude of the normal
    11·1 answer
  • A set of data is collected for object in an inelastic collision, as recorded in the table.
    11·1 answer
  • 40-turn circular coil (radius = 4.0 cm, total resistance = 0.20 ) is placed in a uniform magnetic field directed perpendicular
    5·1 answer
  • A car drives off a cliff next to a river at a speed of 30 m/s and lands on the bank on theother side. The road above the cliff i
    11·1 answer
  • To understand how the two standard ways to write the general solution to a harmonic oscillator are related.
    5·1 answer
  • At room temperature, an oxygen molecule, with mass of 5.31x10-26kg , typically has a kinetic energy of about 6.21x10-21J.How fas
    15·1 answer
  • A book is moved once around the edge of a tabletop with dimensions 1.75 m à 2.25 m. If the book ends up at its initial position,
    10·1 answer
  • What is umax,c, the value of the maximum energy stored in the capacitor during one cycle?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!