(2) polymerization. polymerization<span> is a process of reacting monomer molecules together in a chemical reaction to form polymer chains or three-dimensional networks.</span>
Answer:
The physical and chemical change that occurs in the aquaponics are given below.
Explanation:
The plants and animals grow in size and decrease the mass of plant due to eating by the fishes is a physical changes which occurs in aquaponics. The sunlight has a heat energy which is absorb by the plants present in aquaponics which is a type of endothermic reaction. In aquaponics, the ammonia present in water is converted into nitrates which is used by the plants as a nutrients. When the mass is converted into energy, it increases the temperature of the ecosystem and also the earth surface. For example, if a wood is burn, it change into heat energy which increases the temperature and cause the global warming on the earth surface.
Answer:
From the following enthalpy of reaction data and data in Appendix C, calculate ΔH∘f for CaC2(s): CaC2(s)+2H2O(l)→Ca(OH)2(s)+C2H2(g)ΔH∘=−127.2kJ
ΔHf°(C2H2) = 227.4 kJ/mol
ΔHf°(H2O) = -285.8 kJ/mol and
ΔHf°(Ca(OH)2) = -985.2 kJ/mol
(Ans)
ΔHf° of CaC2 = -59.0 kJ/mol
Explanation:
CaC2(s) + 2 H2O(l) → Ca(OH)2(s) + C2H2 (g) = −127.2kJ
ΔHrxn = −127.2kJ
ΔHrxn = ΔHf°(C2H2) + ΔHf°(Ca(OH)2) - ΔHf°(CaC2)- 2ΔHf°(H2O);
ΔHf°(CaC2) = ΔHf°(C2H2) + ΔHf°(Ca(OH)2) - 2ΔHf°(H2O) – ΔHrxn
Where
ΔHf°(C2H2) = 227.4 kJ/mol
ΔHf°(H2O) = -285.8 kJ/mol and
ΔHf°(Ca(OH)2) = -985.2 kJ/mol
ΔHf°(CaC2) =227.4 - 985.2 + 2x285.8 + 127.2 = -59.0 kJ/mol
ΔHf°(CaC2) = -59.0 kJ/mol
Answer:
At equal concentration of HBCG and BCG^-, the colour is green. This colour first appears at pH = 3.8
Explanation:
HBCG is an indicator that is prepared by dissolving the solid in ethanol.
Since
Ka=[BCG−][H3O+][HBCG]When [BCG-] = [HBCG], then Ka = [H3O+].
If pH = 3.8
Ka= [H3O+] = -antilog pH = -antilog (3.8)
Ka= 1.58 ×10^-4
Answer:

Explanation:
A solution of a weak base and its conjugate acid is a buffer.
The equation for the equilibrium is

The Henderson-Hasselbalch equation for a basic buffer is
![\text{pOH} = \text{p}K_{\text{b}} + \log\dfrac{[\text{BH}^{+}]}{\text{[B]}}](https://tex.z-dn.net/?f=%5Ctext%7BpOH%7D%20%3D%20%5Ctext%7Bp%7DK_%7B%5Ctext%7Bb%7D%7D%20%2B%20%5Clog%5Cdfrac%7B%5B%5Ctext%7BBH%7D%5E%7B%2B%7D%5D%7D%7B%5Ctext%7B%5BB%5D%7D%7D)
Data:
[B] = 0.400 mol·L⁻¹
[BH⁺] = 0.250 mol·L⁻¹
Kb = 4.4 × 10⁻⁴
Calculations:
(a) Calculate pKb
pKb = -log(4.4× 10⁻⁴) = 3.36
(b) Calculate the pH
