Answer:
A) ∆Suniv >0, ∆G<0, T∆Suniv >0.
Explanation:
The connection between entropy and the spontaneity of a reaction is expressed by the <u>second law of thermodynamics</u><u>: The entropy of the universe increases in a spontaneous process and remains unchanged in an equilibrium process</u>.
Mathematically, we can express the second law of thermodynamics as follows:
For a spontaneous process: ΔSuniv = ΔSsys + ΔSsurr > 0
Therefore, the second law of thermodynamics tells us that a spontaneous reaction increases the entropy of the universe; that is, ΔSuniv > 0.
If we want spontaneity expressed only in terms of the properties of the system (ΔHsys and ΔSsys), we use the following equation:
-TΔSuniv = ΔHsys - TΔSsys < 0
That means that T∆Suniv >0.
This equation says that for a process carried out at constant pressure and temperature T, if the changes in enthalpy and entropy of the system are such that <u>ΔHsys - TΔSsys is less than zero, the process must be spontaneous.</u>
Finally, if the change in free energy is less than zero (ΔG<0), the reaction is spontaneous in the forward direction.
Explanation:
For the given values of
we will have the values of
as follows.
As, 
Therefore,
= 2.15,
= 7.20
= 12.38
Now, at pH 6.50
;
At pH = 2.15;
;
At pH 7.20;
;
Hence, we can conclude that most abundant species is
and the second most abundant species is
.
Answer:
d. There are two moles of hydroxide for each mole of these compounds.
Explanation:
calcium hydroxide, strontium hydroxide, and barium hydroxide all have two hydroxide compunds. the difference between each of these compounds is they all contain a different element along with hydroxide.