The mechanical advantage is defined as the ratio between the force produced by a machine and the force applied in input:

For the crowbar of the problem, the force applied in input is 40 N, while the force produced in output is equal to the weight of the rock that is lifted, so 400 N. Therefore, the mechanical advantage is
Answer:
The torque in the coil is 4.9 × 10⁻⁵ N.m
Explanation:
T = NIABsinθ
Where;
T is the torque on the coil
N is the number of loops = 9
I is the current = 7.8 A
A is the area of the circular coil = ?
B is the Earth's magnetic field = 5.5 × 10⁻⁵ T
θ is the angle of inclination = 90 - 56 = 34°
Area of the circular coil is calculated as follows;

T = 9 × 7.8 × 0.0227 × 5.5×10⁻⁵ × sin34°
T = 4.9 × 10⁻⁵ N.m
Therefore, the torque in the coil is 4.9 × 10⁻⁵ N.m
Answer:
The horizontal distance d does the ball travel before landing is 1.72 m.
Explanation:
Given that,
Height of ramp 
Height of bottom of ramp 
Diameter = 0.17 m
Suppose we need to calculate the horizontal distance d does the ball travel before landing?
We need to calculate the time
Using equation of motion




We need to calculate the velocity of the ball
Using formula of kinetic energy



Using conservation of energy



Put the value into the formula


We need to calculate the horizontal distance d does the ball travel before landing
Using formula of distance

Where. d = distance
t = time
v = velocity
Put the value into the formula


Hence, The horizontal distance d does the ball travel before landing is 1.72 m.
Answer:
6N
Explanation:
Given parameters:
Pressure applied by the woman = 300N/m²
Area = 0.02m²
Unknown:
Force applied = ?
Solution:
Pressure is the force per unit area on a body
Pressure =
Force = Pressure x area
Force = 300 x 0.02 = 6N
Answer:

Explanation:
As we know by force equation that force along the inclined planed due to gravity is given as

so the acceleration due to gravity along the plane is given as

now we have



now we know that


