Answer:
y= 240/901 cos 2t+ 8/901 sin 2t
Explanation:
To find mass m=weighs/g
m=8/32=0.25
To find the spring constant
Kx=mg (given that c=6 in and mg=8 lb)
K(0.5)=8 (6 in=0.5 ft)
K=16 lb/ft
We know that equation for spring mass system
my''+Cy'+Ky=F
now by putting the values
0.25 y"+0.25 y'+16 y=4 cos 20 t ----(1) (given that C=0.25 lb.s/ft)
Lets assume that at steady state the equation of y will be
y=A cos 2t+ B sin 2t
To find the constant A and B we have to compare this equation with equation 1.
Now find y' and y" (by differentiate with respect to t)
y'= -2A sin 2t+2B cos 2t
y"=-4A cos 2t-4B sin 2t
Now put the values of y" , y' and y in equation 1
0.25 (-4A cos 2t-4B sin 2t)+0.25(-2A sin 2t+2B cos 2t)+16(A cos 2t+ B sin 2t)=4 cos 20 t
So by comparing the coefficient both sides
30 A+ B=8
A-30 B=0
So we get
A=240/901 and B=8/901
So the steady state response
y= 240/901 cos 2t+ 8/901 sin 2t
Can you translate that in English ? I'll try to help you out with that..
Answer:
This is a conceptual problem so I will try my best to explain the impossible scenario. First of all the two dust particles ara virtually exempt from any external forces and at rest with respect to each other. This could theoretically happen even if it's difficult for that to happen. The problem is that each of the particles have an electric charge which are equal in magnitude and sign. Thus each particle should feel the presence of the other via a force. The forces felt by the particles are equal and opposite facing away from each other so both charges have a net acceleration according to Newton's second law because of the presence of a force in each particle:

Having seen Newton's second law it should be clear that the particles are actually moving away from each other and will not remain at rest with respect to each other. This is in contradiction with the last statement in the problem.
Answer:
at y=6.29 cm the charge of the two distribution will be equal.
Explanation:
Given:
linear charge density on the x-axis, 
linear charge density of the other charge distribution, 
Since both the linear charges are parallel and aligned by their centers hence we get the symmetric point along the y-axis where the electric fields will be equal.
Let the neural point be at x meters from the x-axis then the distance of that point from the y-axis will be (0.11-x) meters.
<u>we know, the electric field due to linear charge is given as:</u>

where:
linear charge density
r = radial distance from the center of wire
permittivity of free space
Therefore,





∴at y=6.29 cm the charge of the two distribution will be equal.
Answer:
The other angle is 30 degrees.
Explanation:
The range of projectile is given by :

Here,
u is the speed of launch of projectile
Here, 
We need to find the other launch angle when the projectile have the same range, such that,




So, the other angle is 30 degrees. Hence, this is the required solution.