Answer: 8.1 x 10^24
Explanation:
I(t) = (0.6 A) e^(-t/6 hr)
I'll leave out units for neatness: I(t) = 0.6e^(-t/6)
If t is in seconds then since 1hr = 3600s: I(t) = 0.6e^(-t/(6 x 3600) ).
For neatness let k = 1/(6x3600) = 4.63x10^-5, then:
I(t) = 0.6e^(-kt)
Providing t is in seconds, total charge Q in coulombs is
Q= ∫ I(t).dt evaluated from t=0 to t=∞.
Q = ∫(0.6e^(-kt)
= (0.6/-k)e^(-kt) evaluated from t=0 to t=∞.
= -(0.6/k)[e^-∞ - e^-0]
= -0.6/k[0 - 1]
= 0.6/k
= 0.6/(4.63x10^-5)
= 12958 C
Since the magnitude of the charge on an electron = 1.6x10⁻¹⁹ C, the number of electrons is 12958/(1.6x10^-19) = 8.1x10^24 to two significant figures.
5,10,15,20,25,30, that's how much it should have been
The complete and comprehensive solution is attached.
Answer:
If there is any sheets or padded material in this room you can cover the window, you could turn off all the lights if there is a light switch in the room, you could try to bring a bright flashlight in and shine it into the other room(try to annoy the person watching you so they leave), act really boring and hopefully make the other person lose interest.
Explanation:
(hint) If you actually get in a situation like this place your fingernail against the mirror or glass you think could possibly be a one-way mirror. If there's a gap between your nail and the mirror, it's most likely a genuine mirror :)
Where are the following sketches?