The answer is leucine would be in the interior, and serine would be on the exterior of the globular protein.
The side chain (R group) of the amino acid serine is CH₂OH. The side chain of the amino acid leucine is CH₂CH(CH₃)₂. In globular protein, leucine found in the interior, and serine found on the exterior. The nature of side chain decides the amino acid position in the globular protein , as CH₂CH(CH₃)₂ this is hydrophobic and CH₂OH is hydrophlic.
Answer:
The only statement about monosaccharide structure which is true is b. (Monosaccharides can be classified according to the spatial arrangement of their atoms)
Explanation:
Monosaccharides are simple sugars that are classified according to the amount of carbon atoms and based on these numbers, we can call them trioses, pentoses and hexoses. They are molecules with aldehyde (aldose) or centone (ketose) groups that have more than one alcohol function, but which do not differ in their position (OH). They do not contain N, since their general formula is Cx (H2O) x. A 6-carbon monosaccharide is called hexose, since the pentose only has 5
0.208 is the specific heat capacity of the metal.
Explanation:
Given:
mass (m) = 63.5 grams 0R 0.0635 kg
Heat absorbed (q) = 355 Joules
Δ T (change in temperature) = 4.56 degrees or 273.15+4.56 = 268.59 K
cp (specific heat capacity) = ?
the formula used for heat absorbed and to calculate specific heat capacity of a substance will be calculated by using the equation:
q = mc Δ T
c = 
c = 
= 0.208 J/gm K
specific heat capacity of 0.208 J/gm K
The specific heat capacity is defined as the heat required to raise the temperature of a substance which is 1 gram. The temperature is in Kelvin and energy required is in joules.
Answer:6.719Litres of Cl2 gas.
Explanation:According to eqn of rxn
2Na +Cl2=2NaCl
P=689torr=689/760=0.91atm
T=39°C+273=312K
according to stoichiometry of the reaction,1Moles of Cl2 gives 2moles of NaCl
But 28g of NaCl was given,we have to convert this to moles by using the relation, n=mass/MW
MW of NaCl=23+35.5=58.5g/mol
n=28g(mass given of NaCl)/58.5
n=0.479moles of NaCl
Going back to the reaction,
if 1moles of Cl2 produces 2moles of NaCl
x moles of Cl2 will give 0.479moles of NaCl.
x=0.479*1/2
x=0.239moles of Cl2.
To find the volume, we use ideal ggas eqn,PV=nRT
V=nRT/P
V=0.239*0.082*312/0.91
V=6.719Litres