Answer:
a) find attached image 1
b) find attached image 2
Explanation :
The more stable radical is formed by a reaction with smaller bond dissociation energy.
since the bond dissociation for cleavage of the bond to form primary free radical is higher, more energy must be added to form it. This makes primary free radical higher in energy and therefore less stable than secondary free radical.
Answer:
The mass of xenon in the compound is 2.950 grams
Explanation:
Step 1: Data given
Mass of XeF4 = 4.658 grams
Molar mass of XeF4 = 207.28 g/mol
Step 2: Calculate moles of XeF4
Moles XeF4 = mass XeF4 / molar mass XeF4
Moles XeF4 = 4.658 grams / 207.28 g/mol
Moles XeF4 = 0.02247 moles
Step 3: Calculate moles of xenon
XeF4 → Xe + 4F-
For 1 mol xenon tetrafluoride, we have 1 mol of xenon
For 0.02247 moles XeF4 we have 0.02247 moles Xe
Step 4: Calculate mass of xenon
Mass xenon = moles xenon * molar mass xenon
Mass xenon = 0.02247 moles * 131.29 g/mol
Mass xenon = 2.950 grams
The mass of xenon in the compound is 2.950 grams
Answer: The are bodies of rock or gas that are named for ancient gods.
Explanation:
Earth is the THIRD planet in the solar system. It support life of all living organisms.
VENUS is the second planet in our solar system. It is named after the Roman goddess of love and beauty.
MARS is the fourth planet in our solar system. It is named after the Roman goddess of war.
Thus, Venus and Mars, are EARTH NEIGHBORS
<span>Let's assume
that the F</span>₂ gas has ideal gas behavior.
<span>
Then we can use ideal gas formula,
PV = nRT
Where, P is the pressure of the gas (Pa), V is the volume of the gas
(m³), n is the number of moles of gas (mol), R is the universal gas
constant ( 8.314 J mol</span>⁻¹ K⁻<span>¹) and T is temperature in Kelvin.</span>
Moles = mass / molar mass
Molar mass of F₂ = 38 g/mol
Mass of F₂ = 76 g
Hence, moles of F₂ = 76 g / 38 g/mol = 2 mol
<span>
P = ?
V = 1.5 L = 1.5 x 10</span>⁻³ m³
n = 2 mol
R = 8.314 J mol⁻¹ K⁻<span>¹
T = -37 °C = 236 K
By substitution,
</span>
P x 1.5 x 10⁻³ m³ = 2 mol x 8.314 J mol⁻¹ K⁻¹ x 236 K
p = 2616138.67 Pa
p = 25.8 atm = 26 atm
Hence, the pressure of the gas is 26 atm.
Answer is "a".
<span>
</span>
Answer:
C The water had adequate nitrogen and phosphorus, so it is likely iron limited.
Explanation:
Phytoplankton are single- cell organisms that live in oceans.
They require nitrogen, phosphorus and trace amount of iron to survive.
From the scientist's results after testing the water for nitrogen and phosphorus,there are reasonable amount of these elements.
Therefore insufficient iron in the water is the reason why he could find plenty phytoplankton in the ocean.