Answer:
1/2
Explanation:
We need to make a couple of considerations but basically the problem is solved through the conservation of energy.
I attached a diagram for the two surfaces and begin to make the necessary considerations.
Rough Surface,
We know that force is equal to,



Matching the two equation we have,


Applying energy conservation,





Frictionless surface




Given the description we apply energy conservation taking into account the inertia of a sphere. Then the relation between
and
is given by


Answer: Resistance = 
The approximate diameter of a penny is, <em>d</em> = 20 mm
thickness of penny is, <em>L = </em> 1.5×
mm
The area of penny along circular face is,
= 3.14×
m²
The resistivity of copper is <em>ρ</em> = 1.72 x 10-8 Ωm.
Resistance,

Answer:
option B.
Explanation:
The correct answer is option B.
The phenomenon of the curtains to pull out of the window can be explained using Bernoulli's equation.
According to Bernoulli's Principle when the speed of the moving fluid increases the pressure within the fluid decrease.
When wind flows in the outside window the pressure outside window decreases and pressure inside the room is more so, the curtain moves outside because of low pressure.
Answer:
Explanation:
This is a displacement vector since it is defined in terms of distance (meters, to be exact). The way you find the y-component is
which says that you multiply the magnitude of the vector (its length) by the sin of the direction (the angle):
and get
12.1 m
With gravitational acceleration at 9.8, initial height at 3.5m and distance at 22m the initial horizontal velocity is 26.03 ms and the flight time is .845 seconds