Answer:
C. It does not address threats to genetic diversity.
Another APEX Answer:
<em>It ignores threats to genetic diversity.</em>
Answer:
Here's what I get.
Explanation:
(a) The buffer equilibrium
The equation for the buffer equilibrium is

(b) Addition of acid
If you add a strong acid like HNO₃, you are increasing the concentration of hydronium ion.
Per Le Châtelier's Principle, the system will respond in such a way as to decrease the concentration of hydronium ion.
The position of equilibrium will shift to the left.
(c) Addition of base.
If you add a strong base like KOH, The hydroxide ions will react with the hydronium ions to form water.
The concentration of hydronium ions will decrease.
Per Le Châtelier's Principle, the system will respond in such a way as to increase the concentration of hydronium ions.
The position of equilibrium will shift to the right.
Answer:
Kb = 0.428 m/°C
Explanation:
To solve this problem we need to use the <em>boiling-point elevation formula</em>:
- <em>Tsolution</em> - <em>Tpure solvent</em> = Kb * m
Where <em>Tsolution</em> and <em>Tpure solvent</em> are the boiling point of the CS₂ solution (47.52 °C) and of pure CS₂ (46.3 °C), respectively. Kb is the constant asked by the problem, and m is the molality of the solution.
So in order to use that equation and solve for Kb, first we <em>calculate the molality of the solution</em>.
molality = mol solute / kg solvent
- Density of CS₂ = 1.26 g/cm³
- Mass of 410.0 mL of CS₂ ⇒ 410 cm³ * 1.26 g/cm³ = 516.6 g = 0.5166 kg
molality = 0.270 mol / 0.5166 kg = 0.5226 m
Now we <u>solve for Kb</u>:
<em>Tsolution</em> - <em>Tpure solvent</em> = Kb * m
- 47.52 °C - 46.3 °C = Kb * 0.5226 m