A photoelectric cell is an electronic device which is used to convert light energy into electric energy.The operation of this device is based on photoelectric effect.
Light of suitable frequency i.e greater or equal to threshold frequency will fall on the cathode maintained at negative potential.The electron emission will take place and these electrons are drifted towards the anode which is at positive potential.
Here,only those radiations will be capable of emitting electrons irrespective of surface barrier of metals whose energy is greater than the work function.
We know that the radiation having long wavelength has least energy as energy and wavelength are inversely proportional to each other.

Here h is the Planck's constant,c is the velocity of light.
Here we have been given red light and blue light.
In the visible spectrum of radiation, the red light has longer wavelength than all other colors of light.Hence blue light has more energy as it's wavelength is less as compared to red light.
Hence, the blue light will activate the most and red the least.
Answer:
(a) F= 6.68*10¹¹⁴ N (-k)
(b) F =( 6.68*10¹¹⁴ i + 7.27*10¹¹⁴ j ) N
Explanation
To find the magnetic force in terms of a fixed amount of charge q that moves at a constant speed v in a uniform magnetic field B we apply the following formula:
F=q* v X B Formula (1 )
q: charge (C)
v: velocity (m/s)
B: magnetic field (T)
vXB : cross product between the velocity vector and the magnetic field vector
Data
q= -1.24 * 10¹¹⁰ C
v= (4.19 * 10⁴ m/s)î + (-3.85 * 10⁴m/s)j
B =(1.40 T)i
B =(1.40 T)k
Problem development
a) vXB = (4.19 * 10⁴ m/s)î + (-3.85* 10⁴m/s)j X (1.40 T)i =
= - (-3.85*1.4) k = 5.39* 10⁴ m/s*T (k)
1T= 1 N/ C*m/s
We apply the formula (1)
F= 1.24 * 10¹¹⁰ C* 5.39* 10⁴ m/s* N/ C*m/s (-k)
F= 6.68*10¹¹⁴ N (-k)
a) vXB = (4.19 * 10⁴ m/s)î + (-3.85* 10⁴m/s)j X (1.40 T)k =
=( - 5.39* 10⁴i - 5.87* 10⁴j)m/s*T
1T= 1 N/ C*m/s
We apply the formula (1)
F= 1.24 * 10¹¹⁰ C* ( 5.39* 10⁴i + 5.87* 10⁴j) m/s* N/ C*m/s
F =( 6.68*10¹¹⁴ i + 7.27*10¹¹⁴ j ) N
We use the formula: p = E/c where E = hc / λ. hence, p = h/ λ. where h is the Planck's constant: 6.62607004 × 10-34 m2 kg / s and <span>λ is the wavelenght.
</span>
a) p = <span>6.62607004 × 10-34 m2 kg / s / 0.1 x10^-9 m = 6.62607 x 10-24 m kg/s
</span>b) p = 6.62607004 × 10-34 m2 kg / s / 3 x10^-2 m = 2.20869 <span>x 10-32 m kg/s
</span>b) p = 6.62607004 × 10-34 m2 kg / s / 2 x10^-9 m = 3.3130 <span>x 10-25 m kg/s</span>
Answer:

Explanation:
(a) Free-body diagram attached.
(b) The stone attached with the string experiences both centripetal (towards the center) and centrifugal (away from the center) forces. The tension of the string counters the centrifugal force until it breaks.
We know that,
Centrifugal force = 
where,
= mass of the stone
= velocity of the stone
= length of the string
To find the maximum speed attained by the stone without the string breaking, we must equate:

or, 
Formula for height
<span> r(t) = a/2 t² + v₀ t + r₀
</span><span> where
</span><span> a = acceleration = -32 ft/sec² (gravity)
</span><span> v₀ = initial velocity
</span><span> r₀ = initial height
</span><span> r(t) = -16t² + v₀ t + r₀
</span> <span>Tomato passes window (height = 450 ft) after 2 seconds:
</span><span> r(2) = 450
</span><span> -16(4) + v₀ (2) + r₀ = 450
</span><span> r₀ = 450 + 64 - 2v₀
</span><span> r₀ = 514 - 2v₀
</span><span> Tomato hits the ground (height = 0 ft) after 5 seconds:
</span><span> r(5) = 0
</span><span> -16(25) + v₀ (5) + r₀ = 0
</span> r<span>₀ = 16(25) - 5v₀
</span><span> r₀ = 400 - 5v₀
</span><span>
r₀ = 514 - 2v₀ and r₀ = 400 - 5v₀
</span> <span>514 - 2v₀ = 400 - 5v₀
</span><span> 5v₀ - 2v₀ = 400 - 514
</span> <span>3v₀ = −114
</span><span> v₀ = −38
</span><span> Initial velocity = −38 ft/sec (so tomato was thrown down)
</span><span> (initial height = 590 ft) </span>