...the potential energy that you build while going up the hill on the roller coaster could be let go as kinetic energy -- the energy of motion that takes you down the hill of the roller coaster.
From
the problem statement, this is a conversion problem. We are asked to convert
from units of grams to units of kilograms. To do this, we need a
conversion factor which would relate the different units involved. We either
multiply or divide this certain value to the original measurement depending on
what is asked. From literature, we will find that 1000 grams is equal to 1 kilogram. We use this as follows:
<span> 1.440x10^6 g ( 1 kg / 1000 g ) = 1440 kg</span><span>
</span>
Answer:

Explanation:
When a pair of medial has greater difference between the their individual refractive indices with respect to vacuum then it has a greater deviation between the refracted ray and the incident ray.
According to the Snell's law:

a)

b)


c)

d)

e)

f)


Answer:
25.82 m/s
Explanation:
We are given;
Force exerted by baseball player; F = 100 N
Distance covered by ball; d = 0.5 m
Mass of ball; m = 0.15 kg
Now, to get the velocity at which the ball leaves his hand, we will equate the work done to the kinetic energy.
We should note that work done is a measure of the energy exerted by the baseball player.
Thus;
F × d = ½mv²
100 × 0.5 = ½ × 0.15 × v²
v² = (2 × 100 × 0.5)/0.15
v² = 666.67
v = √666.67
v = 25.82 m/s
Answer:
E = 1.25×10¹³ N/m²
Explanation:
Young's modulus is defined as:
E = stress / strain
E = (F / A) / (dL / L)
E = (F L) / (A dL)
Given:
F = 10 kg × 9.8 m/s² = 98 N
L = 1 m
dL = 10⁻⁵ m
A = π/4 (0.001 m)² = 7.85×10⁻⁷ m²
Solve:
E = (98 N × 1 m) / (7.85×10⁻⁷ m² × 10⁻⁵ m)
E = 1.25×10¹³ N/m²
Round as needed.